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1 Introduction

Already in 1982 it was felt at what is now the company NS Railinfrabeheer that
the increasing use of computerized railway control required a change in the ways
these were being developed. Suppliers started to develop far more complex
control systems, which did not entirely match the Dutch situation. Commu-
nicating the Dutch situation unambiguously to these suppliers turned out to
be a difficult job, and it was readily recognized that this required a language
tailored for the description of control systems. It should be possible to come
to a similar situation as providers of infrastructure such as bridges, tunnels,
buildings, and of course the railroad itself, who have at their disposal a stan-
dardized way of drawing, complemented with descriptions regarding strengths
and types of material.

A specification language for control systems was proposed, called EURIS
(EUropean Railway Interlocking Specification). This language was inspired by
the ProzeB Ablauf Pline [2] being used at Siemens. EURIS was used to specify
the control of several railway yards, and from this point onward it became clear
that EURIS was appropriate for its intended use. EURIS has been provided
with several simulators [1, 5, 18, 19], and an extensive study into its semantical
aspects has been made [4, 7]. A set of standardized railway control components
for the Dutch situation has been defined in the form of UniSpec [16], aiming
to speed up the design process, and to boost reliability by increasing the level
of reuse.

EURIS is not entirely void of problems. Its syntax and semantics have never
been appropriately defined. Its standard description docunent [3] introduces
the language in a tutorial-like style, so that it is never crystal clear what the
language is exactly. There is no common agreement on what all language
constructs are, and there is no common understanding what each language
construct is supposed to do. Too often the language must be understood by
finding out how the EURIS simulator [18] deals with it, or what the designers of
the language have to say about it. As this may provide conflicting answers, it is
sometimes impossible to come to a definitive conclusion. Clearly, this situation
is undesirable, as EURIS specifications are supposed to equivocally prescribe
how railway control ought to work.

EURIS is in essence a graphical language. An advantage of the graphical
representation is that specifications are easy to read, and that it is generally
easy to see where global variables are changed, or whichi variables are updated
in a flow. However, defining the syntax and semantics, as well as building
tools, is considerably easier for textual than for graphical languages. Therefore,
tlie language IDEAL [17, 5, 19] has been defined, as an intermediate between
EURIS and its simulator. Furthermore, a graphical language is in general much
harder to write than a textual one; it can be unpleasantly complicated to find
the optimal layout of a EURIS specification. EURIS also lacks many common
constructs from textual languages that facilitate the writing of specifications.
These shortcomings lead to the use of ‘tricks’, which obfuscate the specification.
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This is contrary to the intent of specifications, which should be as clear as
possible.

As a solution to the shortcomings mentioned above, and to enter a next
phase in the use, tooling, and development of EURIS, it has been decided
to develop a textual version of it. This textual version is presented in the
current. document, including a tutorial-style introduction, and a description of
its syntax, static semantics and operational semantics. Below we deal with
these notions in more detail, and explain their importance.

We have aimed to develop a language that is close to the original EURIS,
and in line with contemporary languages. An important design goal was to
keep the language concise and expressive, especially for the purpose of safe
control systems. We call the language LARIS 1.0, LAnguage for Railway In-
terlocking Specifications. The version number 1.0 has been added, as extensive
use will undoubtably indicate some shortcomings, which will require changes
in the language. In order to avoid confusion, all revisions of LARIS should be
accompanied with a version number. Whenever in this document ‘LARIS’ is
mentioned, it should be kept in mind that ‘LARIS 1.0’ is intended.

This document is set up as follows. Section 2 explains the ideas behind
EURIS, and gives a brief overview of its constructs. Section 3 contains an
introchiction to LARIS, together with its main features, and tells about the
similarities and differences between LARIS and EURIS. Section 4 presents the
syntax and static semantics of LARIS, while Section 5 gives an operational
semantics for LARIS. Section 6 presents an exemplifying LARIS specification
of part of the railway yard at the Dutch railway station Driebergen. Finally,
Section 7 describes conclusions and further work.

In case of doubt or in case of inconsistencies in this document, the de-
scription of LARIS 1.0 in the Sections 4 and 5, which define its syntax and
semantics, must be taken as authoritative. The syntax describes which se-
quences of symbols can be considered as valid LARIS programs. It is written
down in SDF (Syntax Definition Format) [14]. On purpose the syntax is de-
fined for plain ascii strings, avoiding the use of different letter types, subscripts,
superscripts, and more advanced type settings. Plain strings are one of the few
standards that are accepted, and henceforth LARIS specifications can easily be
accepted among different computer systems. The static semantics prescribes
which LARIS programs are well defined. Typically, it says that all data types
that, are being used have been declared, that if a variable is used it is declared
of the correct type, that types in assignments and procedures are used in the
correct way, et cetera. Every static semantical property can be checked at
compile time, i.e., before the system is actually being installed. Therefore,
checking the static semantics is an effective and cheap way to detect mistakes
in the description of control systems. The style of the static seniantics is con-
form current ideas, but the description is considerably shorter than those of
comparable languages (cf. SDL [9] or LOTOS [21]). It certainly requires some
expertise to read and understand the symtax and static semantics, but luckily
this is only required when in doubt about the real meaning of some construct.
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The operational semantics as defined in Section 5 explains how a LARIS
1.0 specification is interpreted as a process graph. In this way, it is known
which steps a LARIS specification can take. The operational semantics is ac-
tually nondeterministic, in the sense that at particular moinents many different
actions can be taken. So the defined operational semantics ought to be seen
as the potential beliaviour; a run of the system is obtained by selecting one
alternative at each possible moment.

This document has been produced in cooperation with Holland Railconsult,
by order of NS Railinfrabeheer.

Acknowledgements. We thank Peter Middelraad, Daan van der Meij, Henk
Scholten, Eric Burgers, Fokko van Dijk, Gea Kolk, Paul van de Ven, Andre van
Delft, Richard Hilhorst, Jan Tretmans, and Eric Viertelhauser for helping us
understand EURIS, and design LARIS.

2 EURIS

2.1 Introduction

The control and management of a railway system consists of three separate
tasks. First, control instructions for the railway yard have to be devised at
the logistic level. Second, control instructions have to be passed on to the
infrastructure, which consists of points, signals, level crossings, et cetera. This
task is almost always fully automated. Third, it has to be guaranteed that the
execution of control instructions does not jeopardise safety; that is, collisions
and derailments have to be avoided. This is done by means of an interlocking,
which is a medium between the infrastructure and the logistic level together
with its interfaces. An interlocking logic is the embodiment of safety principles
and basic rules, according to which a train moves through a railway yard.
Traditionally, an interlocking logic served as a local solution for a specific
railway yard, whereby the logic could be designed to cope with the peculiarities
of the railway yard. Modern computer-based railway systems demand a uni-
form specification method which can be used to formulate interlocking logics
for all railway yards. The safety restrictions that are imposed on different rail-
way yards are reasonably consistent, depending mostly on the parameters of
autonoinous components such as signals and points. Based on this observation,
Middelraad cum suis from NS Railinfrabeheer evolved a modular specification
method EURIS (EUropean Railway Interlocking Specification) [3], to describe
fully automated interlocking logics; see [7] for an overview. EURIS assumes
an object-oriented architecture, which consists of a collection of generic compo-
nents, representing the building blocks of the infrastructure such as signals and
points, and of two clearly separated entities in the outside world, represent-
ing the logistic level and the infrastructure. The components, which together
make up the interlocking logic, communicate with each other by means of data-
structures called telegrams. The components can also exchange telegrams with
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the logistic level and with the infrastructure.

EURIS not only denotes a specification method, it is also the name for
a graphically oriented imperative specification language that is based on this
method. A Logic and Sequence Chart (LSC) specifies a component. Each LSC
cousists of the graplical represcutation of procedures, which can adapt and test
the values of variables, and which can ultimately trigger the transmission of a
telegram. Such telegrams can be received by neighbouring components, by the
logistic level, and by the infrastructure. Reversely, each component can also
receive telegrams from neighbouring components, from the logistic level, and
from the infrastructure. The graphical format for LSCs evolved as a compact
notation when the Nassi Schneidermann diagrams, which were originally used
to express EURIS specifications, became unclear due to deep uestings of if-
then-else statements.

A strong advantage of an object-oriented architecture is the possibility to
reuse components of a specification. In EURIS, the heart of a specification
defines the way that components handle incoming telegrams. When all types
of compornents have been specified in full detail, the specification of a par-
ticular railway yard is constructed by simply connecting its separate building
blocks in the appropriate manner. A second advantage of the distributed ap-
proach is that if the behaviour of say a signal is changed, then this can be
taken into account on the level of EURIS by adapting the specification of the
corresponding component. A disadvantage can be that in EURIS applications
a procedure such as claiming a route is specified implicitly in the designs of
several components, so that adapting such a procedure can become non-trivial.

UniSpec [3, 16] is a particular instance of the EURIS method, which has
been developed by NS Railinfrabeheer as a complete set of generic components
to compose interlocking logics for the Dutch railway system. Holland Railcon-
sult has implemented a simulator for UniSpec [17, 18], which enables one to
animate the behaviour of a UniSpec specification. The simulator is part of
a tool set named GUIDE, which is currently used by NS Railinfrabeheer to
support both the design and validation of UniSpec specifications. After de-
signing a set of LSCs, tlie user can join instantiations of these LSCs according
to the topology of a railway yard. The result is checked for design rule errors
and compiled, after which situations at the railway yard can be simulated via
a graphical interface. The simulator makes it possible to locate flaws in an
interlocking specification at an early stage of the system engineering process.
Furtliermore, a simulation session gives a detailed insight of the behaviour of
the specification, which can be useful in the communication with customers.

2.2 Overview of EURIS

EURIS is a graphically oriented, parallel, event-driven, weakly typed, imper-
ative specification language. A EURIS specification consists of the graphical
description of components in the form of LSCs (see Section 2.2.3), which are
connected by ports (see Section 2.2.2). Each LSC consists of procedures with
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an imperative character, called flows (see Section 2.2.1). Components can send
data-structures called telegrams (see Section 2.2.2) to each other via their ports.
Reception of a telegram by a component causes the execution of a flow in the
LSC belonging to this component. This flow is determined by the telegram
and the channel via which the component received the telegram. Changing the
value of a variable may also cause execution of a flow.

EURIS assumes the two standard data types of booleans and integers. The
booleans consist of 1, representing true, and 0, representing false. Three stan-
dard functions are defined on integers: addition, subtraction, and multiplica-
tion.

2.2.1 Flows

We consider a certain component, with a unique component name. A flow
for this component is a procedure that is built from the following five basic
constructs:

o An erecution condition formulates under which circumstances the flow is
executed. There are two possibilities.

If the execution condition is of the form T » p, then the flow is executed
if telegram T is received at port p of the component; see Section 2.2.2.

If the execution condition consists of a variable name X, then the flow is
executed depending on (the change of) the value of X; see Section 2.2.2.
A flow is built from the following four constructs.

e A case tests the value of a variable; the returned value influences the
subsequent execution of the flow.

e An assignment adapts the value of a variable.
e A termination symbol marks the end of the execution of the flow.

e A send action p » T instructs that telegram T is sent out via port p of
the component. A send action is always followed by termination of the
flow.

A component is specified by its flows, where the execution conditions of the
flows cover all telegrams that can be received by the ports of the component.

Flows are represented graphically, whereby the tests and assigiunents of the
flow are connected with each other by continuous lines. A test whether variable
X equals value v is denoted either by placing v in the flow below variable X
or by placing the expression (X = v) in the flow. An assignment of value v
to variable X is denoted either by placing >v in the flow below variable X, or
by placing the expression (X : v) in the flow. The graphical layout of flows
is important for the interpretation of tests and assignments; see the picture
below.
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X Y
1 (Z:Y) bP T2
T1 pa 0 >1

The execution condition at the left of this flow expresses that it is executed if
telegram T1 is received via port a. First, the flow tests the value of the variable
X. If this value is 0, then the flow assigns the value 1 to variable Y, after which
it terminates. If the value of X is 1, then the flow assigns the value of Y to Z,
after which it sends out telegram T2 via port b. Z is a telegram-field; if this
field does not yet exist then it is created, and otherwise its value is adapted.

2.2.2 Ports, telegrams, and variables

A EURIS specification assumes a logistic level and an infrastructure, and spec-
ifies the behaviour of a number of components. In particular, it is described
how these separate entities send messages called telegrams to each other, and
how the components react when they receive a certain telegram from a certain
entity. The components and the logistic level and the infrastructure can send
telegrams to each other via communication channels, which are constructed by
the combination of ports. EURIS recognises the following two kinds of ports.

o A component has one or more route ports. Each route port p of a compo-
nent c is linked with exactly one route port p’ of another component c’,
establishing a communication channel between ¢ and c’. If component
c sends a telegram into port p, then this is received by component c'
through port p’, and vice versa.

e A component may have a port that connects it with the logistic level,
and a port that connects it with the infrastructure. Telegrams can travel
from the component to the logistic level and to the infrastructure via
these ports. Vice versa, for each component, the logistic level, and the
infrastructure may have a port via which they can send telegrams to this
component.

e A component may have two central ports, left and right. Central
telegrams with the direction left or right are sent out via the corre-
sponding central port. The destination of the telegram is determined by
its so-called central list, which consists of a list of component names, in-
cluding the current component. Central telegrams that are sent out via
left of right are sent to the component to the left or to the right of the
current component in the central list, respectively.

A telegram has a unique name and carries a telegram teble, which assigns
boolean and integer values to telegram-fields. A telegram may be passed on
between a number of components, which all update the information in the ta-
ble of the telegram. If a flow terminates by sending out a telegram, then it
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attaches the telegram table that was created, or adapted, during the execution
of the flow. Telegram-fields are only meaningful for a component as long as the
flow that belongs to their telegram in the component is being executed.

A route telegram is sent from one entity to another entity, whereby entities
can be components, the logistic level, or the infrastructure. It consists of a
telegram name, a telegram table, and a port name from which it is sent out.

A central telegram is passed on between the components that are on a so-
called central list. Each central telegram has a direction, either left of right,
which determines in which order it visits the components in the central list.
A central telegram consists of a telegram name, a telegram table, a direction,
and a central list.

An internal telegram is generated inside a component by special types of
variables, depending on the (change of) value of such a variable. An internal
telegram consists of a telegram name together with the name of the variable
that produced this telegram, and of an empty telegram table.

EURIS distinguishes several types of internal variables, which are local to
a component. The initial values of input variables, which carry the version
symbol ‘1’, are latched. The values of internal variables without a version
symbol can be adapted without giving rise to the execution of a flow. Finally,
internal variables with a version symbol from {@,&, $, #, ?#,>>#} may trigger
the execution of a corresponding flow, depending on the (change of) value of
such a variable. Before describing these variables in detail, first we say some
more about the time domain.

Time plays an important role in the specification of an interlocking logic.
It enables to model delays; for example, if a train has passed a section, then
for safety reasons this section has to be unoccupied for a certain period of
time. We assume a discrete time model, in which time progresses in distinct
steps, called time slices. Methods such as Vital Processor Interlocking [13]
from the General Railway Signal Company and ProzeB Ablauf Pline [2] from
Siemens, which are used for the implementation of real-life interlockings, and
the simulator of EURIS, are based on a discrete time domain. Furthermore,
it has been shown in practice that it is technically feasible to synchronise the
parallel processes of a EURIS specification on time slices.

One-shot & x(b) represents the one-shot variable X in component c, with
boolean value b. This value can be tested, or adapted by an assignment, during
the execution of a flow in component c.

Intuitively, the variable X emits a telegram exactly once, if the boolean
value of X is changed to 1. This is modelled as follows. If the system evolves
into a new time slice, then:

- if the boolean value of X is 1, then a telegram is generated, after which
the boolean value of X is changed to 0.

The flow for the telegram that is emitted by X in component c, if its boolean
value is 1, is specified in the flows for c.
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Toggle $. x(b,b') represents the toggle variable X in component ¢, where b
is the boolean value of X at the end of the last time slice, and ¥ is the current
boolean value of X. Only this last boolean value of X can be tested, or adapted
by an assignment, during the execution of a flow in component c.

Intuitively, the variable X emits a telegram if its boolean values at the end
of the last and the current time slice differ. In other words, if the system evolves
into a new time slice, then:

- if b and b’ are distinct, then a telegram is generated, and the value b is
changed into the value b'.

The flow for the telegramn that is emitted by X in component c, if b and
differ, is specified in the flows for c.

Timer #. x(n,b) represents the timer variable X in component c, with as
clock value the non-negative integer n, and with the boolean value b. The
boolean value of X can be tested, or adapted by an assignment, during the
execution of a flow in component c. The clock value of X can only be tested
during the execution of a flow in component c.

Intuitively, the timer X is active if the boolean value of X is 1, and otherwise
it is inactive with clock value . In other words, if the system evolves into a
new time slice, then we can distinguish the following possibilities.

- If the boolean value of X is 1, then its clock value is changed to n + 1.

- If the boolean value of X is 0, then its clock value becomes 0.

Time-out >># x(m,n) represents the time-out variable X in component c,
with as period the positive integer m, and with as clock value the non-negative
integer n. The clock value of X can be tested during the execution of a flow in
component ¢. Furthermore, X can be assigned the boolean value 1, in which
case it is ‘set’, or the boolean value 0, in which case it is ‘reset’, during the
execution of a flow in component c. If X is set, then its clock value is changed
to m; If X is reset, then its clock value is changed to 0.

Intuitively, the variable X emits a telegram m time units after it has been
set. In other words, if the system evolves into a new time slice, then we can
distinguish the following possibilities.

- If the clock value n of X is 1, then a telegram is generated, after which
the clock value is changed to O.

- If the clock value n of X is greater than 1, then the clock value is changed
ton — 1.

- If the clock value of X is 0, then the clock value remains 0.

The flow for the telegram that is emitted by X in component ¢, if its clock
value is 1, is specified in the flows for c.
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Cyclic time-out @ x(m,n,b) represents the cyclic time-out variable X in
component c, with as period the positive integer m, with as clock value the
non-negative integer n, and with the boolean value b. Only the boolean value
of X can be tested, or adapted by an assignment, during the execution of
a flow in component c. If X is assigned a boolean value b’, then the clock
value automatically becomes 0, so that the new state of the variable X is
@ x(m,0,V).

Intuitively, the variable X emits a telegram every n time units, if the
boolean value of X is 1. In other words, if the system evolves into a new
time slice, then we can distinguish the following possibilities.

- If the boolean value of X is 1, and its clock value n equals 0, then a
telegraimn is generated, after which the clock value of X is changed to
m—1.

- If the boolean value of X is 1, and its clock value n is greater than 0,
then the clock value of X is changed to n — 1.

- If the boolean value of X is 0, then the clock value of X becomes 0.

The flow for the telegrain that is emitted by X in component c, if its boolean
value is 1 and its clock value is 0, is specified in the flows for c.

Dynamic time-out 7# x(n) represents the dynamic time-out variable X in
component c, with as clock value the non-negative integer n. The clock value
of X can be tested, or adapted by an assignment, during the execution of a
flow in compounent c.

Intuitively, the variable X emits a telegram after n time units. In other
words, if the system evolves into a new time slice, then we can distinguish the
following possibilities.

- If the clock value n of X is 1, then a telegram is generated, after which
the clock value is changed to 0.

- If the clock value n of X is greater than 1, and the clock value is changed
ton — 1.

- If the clock value of X is 0, then the clock value remains 0.

The flow for the telegram that is emitted by X in component c, if its clock
value is 1, is specified in the flows for c.

2.2.3 Logic and sequence charts

An LSC consists of a number of graphical representations of flows. An LSC
takes as basis a list of internal variables, whereby variables carry their version
symbols. Figure 1 presents an example of an LSC. X, X;, and X3 are internal
variables. X is an input variable, which is denoted by the version symbol ‘1’,
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! &
Xl X_2 X;s
I i % % a2
>0 } 1 5
T1 : " -
> b —[(Xl o & %(Bee. X3)— c P13
(X1 =1) |
' v
TS5

Figure 1: An LSC example.

X, is a one-shot variable, which is denoted by the version symbol ‘&’, and X3
does not carry a version symbol. The graphical representations of the flows
that make up the LSC are drawn below this list. Thus, we obtain the picture
that is displayed in Figure 1. Below each variable name we have drawn an
imaginary vertical dashed line. Each test and assignment in a flow is placed
on such a dashed line, in order to relate it to the variable of which the value
is tested or adapted. Some of the flows share the same tail, which means that
from some point onwards they have the same functionality. However, flows are
independent entities. We explain the meaning of each flow.

| 1 ap- T2
0 >1

Tl pa

The flow above is executed if the telegram with name T1 is received via port a.
If the input variable X is 0, then this flow assigns the value 1 to the one-shot
variable X5, after which it terminates. If X, is 1, then this flow sends out the
telegram with name T2, and with the unaltered telegram table, via port a.

>1
T1>b—[(X1=0>—|

(X1 =1}

v
T5

The flow above is executed if the telegram with name T1 is received via port b.
If the input variable X is 0, then this flow assigns the value 1 to the one-shot
variable X2, after which it terminates. If X, is 1, then this flow sends out the
telegram with name T5 to the infrastructure.
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& >——(Be: X3)——c P T3

The flow above, generated by one-shot variable X, assigns the value of variable
X3 to variable Be. Next, the telegram with name T3 is sent out via port c.

2.3 Related work on EURIS

The tool kit for EURIS, developed at Holland Railcousult, uses internally a
symbolic representation language called IDEAL [18]. In [5] the syntax and
static semantics of IDEAL is specified in ASF+SDF. See (6] for presentation
of the ASF+SDF specification environment. The motivating idea behind the
ASF+SDF specification of IDEAL was the following. IDEAL could function as
an interface between EURIS and other representations which could then aim at,
e.g., verification and semantics. Currently this work gains relevance, because an
automatic translation of IDEAL to the specification language LARIS proposed
in this text is useful practically, and feasible technically. In [1] the semantics
of EURIS was studied by some small translation experiments of EURIS into
timed coloured Petri nets. The work of the projects mentioned above coalesced
in [19] where it is described how ASF+SDF can be used to generate Petri nets
from IDEAL.

An intensive study on EURIS was reported on in [4]. This book describes
various aspects of EURIS. First, it gives an informal introduction, a reasonably
complete description of the syntax, i.e., the syntax found in the UniSpec LSCs
used by the EURIS tool kit. Second, a proposal for an operational seman-
tics of EURIS is given in discrete time process algebra, for a language called
EURISpro. With respect to semantics, EURISp70 is a precursor of LARIS.
Third, the relation of EURIS and Vital Processor Interlocking (VPI) is stud-
ied. It turns out that under strong assumptions and restrictions EURIS pro
can be simulated on a VPI, and that this variant of EURISpro can be ver-
ified in the style of work on VPI [8, 10, 13]. This route seems nevertheless
not very attractive due to the restrictions. The translation from EURISpro
to VPI programs experiments with a symbolic presentation that can be seen
as a sketchy syntactic precursor of LARIS. Finally, an incremental approach
to the compilation and specification of correctness criteria on interlockings is
discussed. In Section 3.7, the relation of LARIS and EURIS pro are discussed
in more detail.

3 LARIS

LARIS (LAnguage for Railway Interlocking Specifications) is a textual language
for specifying distributed communicating systems that act as an intermediary
between logistic level and infrastructure. The motivating examples are railway
interlocking systems. Such systems are given tasks by the logistic level, which
are then carried out on the infrastructure level (in this context also known as



12 LARIS 1.0

the track-side level) in a way that respects certain safety criteria. LARIS is
meant. to be a textual variant of EURIS.

A typical system might look as in Figure 2. The logistic level and the
infrastructure level are treated as components, so that there are a total of eigh-
teen components. The sixteen components between the logistic level and the
infrastructure together comprise the interlocking. These are the only compo-
nents that are available to a LARIS specification; the logistic and infrastructure
components are treated as the environment.

Control

Infrastructure

Figure 2: A typical system.

We may only be interested in specifying a portion of an interlocking. For
example, we may only be interested in specifying the part within the dashed
box in the figure above. LARIS allows such partial specifications. All other
components are then treated as part of the environment.

There is always a fixed number of components. Components are not created
dynamically on-the-fly, as opposed to languages such as PROMELA [15] and
LOTOS [21].

Communication is in principle possible from any component to any other.
Communication is taken to be asynchronous. This is modelled by means of
two unbounded buffers, FIFO (first-in-first-out) queues, placed between every
two components in the specified part, one for each direction of communication
(see Figure 3). Modelling communication in an asynchronous way has as a
consequence that when component 1 in Figure 4 first sends a telegram a to
component 2 and then a telegram b to component 3, which in turn gives rise
to a telegram ¢ from component 3 to component 2, the telegram a could bhe
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delayed in the communication channel and in fact arrive at component 2 after

telegram ¢ arrives.
T T T T ]
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Figure 4: Overtaking of telegram a.

Components themselves have the following internal structure. There is an
input buffer, where incoming telegrams are stored temporarily, before being
processed by the component. Telegrams received from the component itself
(internal telegrams) are also stored in this buffer.

There is a message handler, which extrudes telegrams from the input buffer
and, depending on the type of telegram it finds, performs some operations.
These operations could result in putting an internal telegram into its own buffer,
sending telegrams along channels to other components, changing the values of
locally stored variables, or (de)activating timer processes. The message handler
of a component is available to specification in LARIS: it is the programmable
part of a component. This part consists of a number of statements, being
sequences of instructions, one such sequence for each type of telegram that
can be expected to arrive at the component. The basic instructions can be
categorized as follows:
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e assignments;

e sending telegrams;

o (de)activating timer processcs;
e procedure calls.

More is said about such instructions in Section 3.2.

)
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In graphical form, a component has the structure depicted above. This
picture is purely for the purpose of demonstration; it is not meant to mean
that components always have internal variables TSL, nor that components have
a single time-out and a single timer.

Summarizing, a system in LARIS is a collection of components and of com-
munication channels between them. Components are the part of the system
that are specified in LARIS. However, in general one does not need to specify
every component separately. To capture the idea that many components share
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certain characteristics, and perhaps only differ in a small number of parame-
ters, in EURIS one has the notion of an LSC. LARIS retains this notion. To
obtain a specific component from an LSC it suffices to provide a name for the
component, and to fill in the parameters that the LSC requires.

A typical LARIS LSC would be:

LSC name (Ea, Eb:Component; Pa, Pb:Port; TSL:Int) =
vars PER, TSU, TRL:Bool;

initial skip

mes a? A06 (RL:Int) =
RL:= RL+TSL;
if TSU
then PER:= false
else TRL:= true;
Eb |> Pb ! A06(RL)

mes b? A06 (RL:Int) =
Ea |> Pa ! AO6(RL)

panic Log |> log ! PO1(self)

This would have the following analogue in EURIS:

>
TSL _Tsu PER TRL

R : 7
|

A06 ™ a —(RL:RL+TSLT 0 — —1 I — b*™ A06 ||
| | —>0

A06 ™ b — a>A06|
4

L
| Senu—

.|

From the above, the reader is expected to get nothing but a flavour of LARIS,
not to fully grasp all meaning of the LSC. In the remainder of this section
we give a more detailed overview of the language LARIS. We hope to provide
some intuitive insights into the language. The inquisitive and mathematically
oriented reader is invited to read the formal syntax and semantics provided in
Sections 4 and 5.

3.1 Types and expressions

LARIS is a typed language: every expression that is used in a LARIS specifica-
tion las a certain type. Operations are sensitive to these types. For instance,
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addition can only be applied to expressions of the type integer. We list the
available types and the operations that are applicable to expressions of these
types.

3.1.1 Booleans and integers

The first two basic types that LARIS uses are familiar ones: Bool for booleans
and Int for integers.

Bool is the type for truth values, of which we have two: true and false.
We have the following standard operations on booleans:

A and
~ not

Int is the type for integers ...,—2,—1,0,1,2,.... We have the following
standard operations on integers:

+ addition
- subtraction
* multiplication
div division, rounded down
mod modulo
Furthermore, we have == to express that two integers or booleans are the

same, and < to express that one integer is smaller than the other. We use the
following abbreviations:

abbreviation | what it abbreviates

E|F ~(~E AN ~F)
E>F F<F

E<=F E<F | E==
E>=F F<=F

In EURIS the booleans are represented by the integers 0 and 1. Thus it is
possible to add booleans to integers in EURIS. In LARIS overloading of this
kind is not allowed. To achieve the same effect, one would first need to convert
booleans to integers. Thus, while

vars B:Bool; I:Int
I:= I+B

is illegal in LARIS, the desired effect may be achieved by

vars B:Bool; I:Int
if B then I:= I+1
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3.1.2 Enumerated types

In LARIS one may define a type by means of a declaration such as:

Route = { drive_on_sight,
normal,
automatic_normal,
drive_on_sight_normal }

By this means we have defined the type Route. Expressions of this type can
lhave four possible values, namely those listed between accolades.
Empty type definitions are not allowed, so the following is forbidden:

Nothing = { }

3.1.3 Components and ports

Component is the type containing names of building blocks such as tracks and
signals, which together make up an interlocking. Components may perform
internal calculations, communicate with each other and with two special com-
ponents, Log and Inf.

Log represents the logistic level, while Inf represents the infrastructure
level. These are the levels between which an interlocking is an intermediary
(see Figure 2).

Another important basic type is Port. Expressions of this type represent
the names of the ports of components ou which telegrams may be received.
In EURIS, typically, these names are a, b, ¢, and d. In LARIS there is no
restriction on the number of port names, nor on the names used. There are a
number of presupposed port names.

e log is the main port on which Log receives telegrans. It is also the name
of the port on which interlocking components receive telegramms from the
logistic level. This port name corresponds to EURIS execution conditions

of the form
N

v
|

e inf is the main port on which Inf receives telegrams. It is also the port
on which interlocking components receive telegraims from the infrastruc-
ture level. This port corresponds to EURIS execution conditions of the
form

|
A
N

e left is the port on which left central telegrams are received. This port
name corresponds to EURIS execution conditions of the form — < N
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e right is the port on which right central telegrams are received. This port
name corresponds to EURIS execution conditions of the form N > —

In EURIS, if a component A wishes to send a telegram to a component B,
there are two ways to do so. If A has a route port « and B has a route port
b which are connected, then A may send the telegram along port a, so that B
receives this telegram on port b. This is the main means of communication.
Another means is via the use of central telegrams and central lists. If A sends
a central telegram and B happens to be on the right spot in its central list,
then it is also possible for A to get its telegram across to B.

Central telegrams have such potential that communication from anywhere
to anywhere is a definite possibility, although rarely used in such a rogue man-
ner in EURIS specifications. To accommodate the strength of central telegrams,
communication in LARIS occurs on a fully connected network. This means that
any component is able to send a telegram to any other component. Port names
are still important: typically, as in EURIS, different flows are initiated when
the same telegram is received on different ports of the component.

Thus, a typical communication of a telegram with name B0O1 and contents
true to a component S1, such that S1 receives this telegram on port p, is
achieved by the statement

S1 |> p ! BO1(true)

This makes communication in LARIS somewhat different from communication
in EURIS. For example, consider the following system layout, EURIS-style:

r — r =
a b’

B E— ! st ‘

U "} I —

In EURIS, if SO wishes to send a telegram to port b of 81, then this telegram is
sent along the a-port of S0. The layout of the system ensures that this telegram
arrives at the required spot. In LARIS, however, the telegram is sent directly
to the b-port of S1.

Besides being able to handle so-called neighbour-telegrams of the above
sort, LARIS-style communication also allows for central telegrams. The beauty
of LARIS communication is that all these telegrams use the same means of
comnmunication.

3.1.4 Default values

If no specific value has been assigned to a variable of which the type is known,
it is assuined to have the default value of that type. For the basic types, these
default values are listed below.
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type default value

Bool false

Int 0

Component Log

Port log

Enumerated type | First value in the list

Note that, as enumerated types must be nonempty, their default value is
always defined.

3.1.5 Arrays

LARIS allows the construction of simple arrays. An array type is of the form
T(ly,...,I,], where T is a basic type and each of Iy,..., I, is an index, that
is, either a basic type or a positive integer. Examples are: Component [Int],
Bool [Port,Int], and Bool[100]. We explain such types by a detailed look at
a series of examples.

First consider the type Component [Int]. This is the type of arrays with
as indices integers and as values names of components. Indices help us to
retrieve values out of arrays. If A is an array of the type above, then we use
the expression A[3] to denote the component in A at index 3. Note that this
expression is then of type Component.

We may also have pairs, or even tuples, as indices. An example where this
occurs is Bool [Port,Int]. Its values are booleans, and its indices are pairs of
port names and integers. Thus, if A is an array of this type, then Ala,-3] is a
boolean, namely the one stored at index (a, —3), assuming of course that a is
a port name.

Another valid array type is Int [3]. This is a list of three integers, which it
stores under indices 0,1, 2. If A is an array of this type, then A[i] is undefined
for indices i other than 0,1, 2.

We construct arrays mainly by means of assignments:

vars A:Bool[100]; i:Int
i:= 0; while i < 100 do A[i]:= true

This declares an array A of type Bool [100], and makes sure that at every index
the value true is stored. In LARIS, another way to achieve this is by meauns
of the expression

{(x,true)}: Bool[100]

Values at particular indices can be retrieved from such arrays by traversing the
list from left to right, until the index in question matches all but the last item
in a tuple. The final item in the tuple then gives the desired value. If no match
is found, the default value is given.
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* is the wild-card character: it matches with anything. Thus in the above
case, if one wishes to know the value at index 15, one finds an immediate match
with *; the produced value is true.

Another example is the array that is false at 3 and true otherwise:

{(3,false), (*,true)}: Bool[100]

To find the value at 15 here, we traverse the list. The first index we find is 3,
with value false. 3 does not match 15, so we proceed in the list and we find
the same match as before: the produced value is again true. Including the type
Bool[100] is necessary, because we wish to unambiguously know the type of
an expression. This is not possible with the notation { (*,true)}, which could
as easily have been of type Bool [Port].

As a more involved example, with pairs as indices, let A be the following
array:

{@,2,true), (1,*,false), (*,2,true), (*,*,false)}: Bool[Int,Int]

The array is presented as a list of tuples of the form (a,b,c), where the first
two represent the index and c represents the value at that index. To know the
value of A at a particular index, one traverses from left to right until either a
match is found, or the end of the list is reached and the default value is produced
(which in this case is false, because the values of A are booleans). For instance,
A[1,2] = true, A[1,3] = false, A[3,2] = true, and A[3,3] = false. A can
be written much shorter, simply as {(*,2,true)}: Bool[Int,Int]. Order is
vitally important in this notation. Let B be the result of permuting the first
two tuples in the list of A:

{(1,*,false), (1,2,true), (*,2,true), (*,*,false)}: Bool[Int,Int]
Then B[1,2] = false, and B is equivalent to:

{(1,2,false), (*,2,true)}: Bool[Int,Int]

3.1.6 Clock types

All the previously mentioned types are referred to as data types. The next types
we introduce are of a more dynamic nature, namely the clock types. There are
three kinds.

e First there is the type Timer. Variables of this type denote simple stop-
watches, clocks that can count upwards and may be started and stopped.

To understand some of the possibilities of variables of this sort, consider
the following specification fragment:

vars X:Timer; efficient:Bool
initial start X; ! A01(Q)
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mes ? A01() = if active X
then {efficient:= (value X < 2); stop X};
start X; ! A01Q)

This represents part of the specification for an LSC that has a local
variable X of type Timer and a boolean variable efficient that is set
to true if handling of internal telegrams is deemed efficient enough (i.e.,
if this can be performed within two time units, or to be more precise,
before two slice borders have been passed).

A component’s specification consists of a sequence of instructions to be
carried out when a telegram of a particular forin has been found in its
input buffer, denoted by mes 7. The clause above gives the instructions
that are to be carried out if an internal telegrain has been received with
name AO1 and no data (hence ()). The specification also contains some
initial instruction to be carried out when the component is started up.

A timer is either active or inactive. The expression active X gives a
boolean true in the first case and false otherwise. The only way to
activate a timer is by means of the instruction start X. This resets the
counter of the timer to zero and thereafter increases the counter by one
after every time unit. The only way to deactivate a timer is by means of
stop X, which simultaneously resets the counter to 0. In the specification
above, active X always produces true, as at the point of this test X is
always active.

Another piece of information that can be extracted from the timer, be-
sides whether its active or not, is the amount of time it has been running.
This may be done by means of the expression value X. If X is active,
value X gives the number of time units that have passed since its acti-
vation. If X is not active, then value X produces 0.

The above specification describes a component that starts a timer X and
then sends itself an internal telegram A01 (by ‘! A01()’). When this
telegramn is retrieved from the component’s buffer and processed, it is
verified how long the timer has been running. It is deemed efficient only
if the timer has been running less than two time units. After this the
timer is restarted (starting at zero again) and the test repeats itself,
indefinitely.

A specification in EURIS with the same behaviour is depicted below.
Note that a toggle INI is needed for the initial behaviour. The X and
efficient have been adapted to EURIS-style and changed to X01 and
EFF.
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e A second clock type is Timeout. Variables of this type represent clocks
that count down from a prespecified value, and when their time is up they
send a series of internal telegrams. At the sending of these telegrams they
are deactivated.

Time-outs are activated by instructions of the form
># X n ! Nd,...,dn)

where X is the time-out variable, n is the delay, and the telegram to be

sent has name N and data parameters dy,...,d,. Time-outs are deacti-
vated either when their time is up, or by means of the instruction stop
X.

Time-outs may also be queried as to their status and their value. When X
is an active time-out, value X produces the time to go before the telegram
is sent, rounded down. Otherwise it produces 0.

When a time-out is activated that is already active, the old values are
thrown away. Thus, in the following:

vars X:Timeout; i:Int
i:= 1; while i <= 100 do {>># X i ! A01(Q); i:= i+1}

the time-out X is activated a hundred times, but eventually, only a single
internal telegram is sent, a hundred time units after the while-loop has
been abandoned. This does, however, depend on the speed of the while-
loop and the length of the time units.

e Finally, we have the clock type Cycler. These are similar to time-outs,
except that when a cycler variable X has been activated by the instruction

@ X n ! Ndy,...,dn)
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then after the time has run out and the telegram has been sent, the cycler

is not deactivated, but the delay n is reinstalled. After this delay has
passed the telegram is sent again, after which the whole process repeats
itself. A cycler X can only be deactivated by means of the instruction
stop X.

3.1.7 Names of variables

For every type above we may declare variables to be of this type. For instance,
we may say X:Int, declaring the variable X to be of type Int. This variable
may then be used as if it were an integer: addition may be applied to it, but
boolean operations may not.

A variable name can be any string starting with an upper- or lowercase
character, followed by any string of numbers and characters, interspersed with
underscores. A variable name may not end with an underscore.

There are some other restrictions on variable names: the name may not
occur as an inhabitant of an enumerated type. For instance, if the type Route
was defined as above (on page 17), then normal could not be used as a variable
name.

Furthermore, keywords such as mod and others to be introduced later, are
also not available as names for variables.

3.2 Statements

When a telegram of a particular type is to be processed, a series of appropriate
instructions is carried out. This series of instructions is written as a statement.
Such a statement is built up from basic statements, such as assignnents, and
control constructs well-known from imperative programming languages, such
as if-then-else constructions.

Whiile discussing types and expressions, we have already come across several
such statements. In this section we give an exhaustive list of the statements
that are allowed in LARIS.

Assignments LARIS has assignments to data-variables. Thus, if X is a vari-
able and E is an expression of the same data type, then X:= E is an
assigument. For instance, if X is a variable of type Int [Int], then

X:= {(0,00, (1,2), (+,1)}

is a possible assignment.

It is also possible to change array-variables at particular indices. For
instance, let X be as above. Then the effect of the previous assignment
can be achieved by:

X[*]:=1; X[1]:= 2; X[0]:= 0
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The first assignment in this series is of interest: we allow the wild-card *
in these index assignments. If X is of type Int [Int,Int], then X[*,2]:=
4 changes the value of X at all indices (n,2) to 4, where n is any integer.

Telegrams

External E |> p ! A01(dy,...,d,,) sends the telegram A0O1 with data
parameters dj,...,d,, to port p of component E. This statement is
only executable if E is not the name of the current component.

Internal ! A01(d,,...,d,,) places the internal telegram with name A01
and data parameters dy,...,d,, in the input buffer.

Clock statements

e start X, with X of type Timer, resets X to 0 and activates it.

e ># X n ! A01(dy,...,dn), with X of type Timeout, activates
the time-out X and sets the delay to n, where n > 0. The message
handler carries on, but when the delay has passed, internal telegram
401 with data parameters dy,...,d,, is placed in the input buffer,
and X is deactivated.

e @ X n ! A01(dy,...,dn), with X of type Cycler, activates the
cyclic telegram sender X. The length of the cycle is » > 0. At the
end of each cycle the telegram A01 with data parameters dy,...,dn
is placed in the input buffer.

e stop X deactivates X.
Procedure calls P(dy,...,d,) is a procedure call, with P a procedure name
and dy,...,d, asits arguments.

Parameter passing in procedures is treated call-by-value, as opposed to
call-by-reference. This means that only the values of variables are passed
on to a procedure, not the variables themselves. For example, consider
the procedure

proc setl1(X:Int) = X:= 1

Then the sequence X:= 0; set1(X) would bring us to a state where
X denotes 0, and not 1, as one might expect under a call-by-reference
interpretation of parameter passing.

Skip skip is the empty statement: it does nothing.

Control constructions These are familiar from imperative languages:

e if F then A.
e if F then A else B.



LARIS 25

e while F do A.

[ ]
case X in
{ EU : AU
E, .
otherwise : A,;; }

checks whether the value of the data-variable X equals that of E.
If it does, Ag is carried out. If not, it is checked whether X equals
Fi. Tt continues in this fashion until either a match is made, or
the otherwise clause is reached, upon which A, ; is carried out.
The otherwise clause is obligatory, to specify the action should the
cases Ey, ..., E, not cover all possible values of X.

o A;; Ay is the sequential composition of A; and As: first carry out
Ap, then A,. The symbol ¢ is used as a separator, and not as a
terminator. So A;; As; is not syntactically correct in LARIS.

To disambiguate statements we may use curly braces ‘{" and ‘}’. For instance,
the statement

X:= 0; if X == 0 then X:= 1 else X:= 2; X:= X+1
is ambiguous. It could be parsed as
X:= 0; if X == 0 then X:= 1 else {X:= 2; X:= X+1}
which yields the value 1 for X. Another parsing is
X:= 0; {if X == 0 then X:= 1 else X:= 2}; X:= X+1
which assigns X the value 2.
Statements are used in LARIS in a variety of places:
e to specify the initial behaviour of a component at startup;
e to specify the response of a component to a telegram;
e for the definition of procedures;

e to specify the behaviour in case of an undesired or unexpected result
(panic).

Together, such statements form an LSC; these are introduced in the next sec-
tion, in the course of which the various uses of statements listed above are
explained.
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3.3 LSCs and behaviours
A typical LSC in LARIS looks as follows:

LSC example (C_list:Component[Port], P_list:Port[Port]l) =
vars RNN:Int; TSO0:Bool

initial t TSOQ)

mes a ? AO3(RN:Int; GT:Bool) = entry(b,RN,GT)
mes b ? AO3(RN:Int; GT:Bool) entry(a,RN,GT)

proc entry(P:Port; RN:Int; GT:Bool) =
vars 0ld:Bool
0ld:= TSO; TSO:= GT; TS0(01d); RNN:= RN;
C_list[P] |> P_list[P] ! AO3(RN,GT)

proc TS0(01d:Bool) = if 01d =/= TSO then ! TSOQ)
mes 7 TSO() = Inf |> inf ! WO4(RNN)

panic Log |> log ! PO1(self)

This could be the translation of the following EURIS LSC (although this is only
a possible translation, not the one we actually have in mind, sce Section 3.6):

— S ~

r T - — _ 1

S 11
TSO _RNN G
A3 > a T —(TSO: GT)—(RNN:RN)— ‘|' b a™ A03
A3 ™ b . —a b* A03
$ —(RN:RNN)—/™
\
W04

So an LSC begins with the keyword LSC, followed by its name, in this case
example.

The LSC example has two parameters, C_1list and P_list, to be supplied
when a specific component is desired. An LSC is but a generic component,
which can be used to specify many different components. Both C_1list and
P_list have as indices the port names of the LSC example, being a and b.
Intuitively, C_ list[a] and P_list[a] represent the component and the port to
which the a-port of example is connected, respectively. Similarly for C_1ist[b]
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and P_list[b]. For instance, suppose we have the following system layout:

[ other other
| Signall a Signal2

b a

example

Section3

If Section3 is the name of the current component, of LSC type example, then
the intended parameters would be:

Clist = {(a,Signall), (b,Signal2)}
Plist = {(a,b), (b,a)}

Let us proceed with the examination of the LSC example. After the list
of to-be-supplied parameters we find the symbol ‘=’, followed by a list of LSC
variable declarations, preceded by the keyword vars. The values of these
variables may change, as opposed to LSC parameters, which remain fixed. At
the start, the variables are assumed to have the default values for their types.

After these parameter and variable declarations, the initial behaviour is
defined. In this case, all that happens is that an internal telegram with the
name TS0 and no data is placed in the input buffer. The EURIS specification
has the same initial behaviour: initially, all toggles ($-variables) are assumed
to fire. The toggle TS0 is modelled by the boolean variable TS0, the procedure
TSO(b:Bool), and the telegram TS0(), which concatenates all the flows of TS0
(if there are more than one) in a certain order.

Now we have reached the heart of an LSC: its list of behaviours. These come
in two sorts: responses to telegrams and procedure definitions. The first sort
of behaviour we find deals with a certain kind of telegrams found in the input
buffer, and defines a response, in the form of a statement. Such behaviours
start with the keyword mes ?. The first two behaviours define responses for
A03-telegrams found on respectively the a- and b-port. We see that external
A03-telegrams have type (Int,Bool), that is, such telegrams carry two pieces of
data, the first an integer, the second a boolean. The responses that are defined
both first call a procedure entry. The definition of this procedure is the third
behaviour. Procedure definitions begin with the keyword proc, followed by the
name of the procedure, a list of parameters, the symbol ‘=’, possibly a list of
variable declarations, and a statement. The definition of entry contains all
these elements.

The definition of the procedure entry involves a local variable 01d. LARIS
does not allow name clashes between local variables and parameters in proce-
dures and global variables and parameters in LSCs. This is to avoid possible
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confusion as to which version of a variable an assignment is made. It is perfectly
all right, though, for another procedure definition or message handling to use
the same names for local variables or parameters. The same convention about
the choice of names applies to local variables of telegram responses. In the
example none of these have local variables, but they are allowed nevertheless.

After the definitions of the procedures entry and TSO we find another tele-
gram response, but this time without a port name before the ‘?’. This is the
response to the finding of an internal telegram with the name TS0 (and no data)
in the input buffer. As opposed to EURIS, in LARIS such internal telegrams
may carry data.

An LSC has a mandatory initial clause and a possibly empty sequence
of behaviours such as telegram responses and procedure definitions. The final
clause of an LSC is the panic clause, specifying the behaviour of the component
should something unforeseen occur. Examples of such unexpected events are
the arrival of a telegram that is not well typed or for which no response has
been specified, an attempt to divide by zero, an attempt to send an external
telegram to itself, or trying to retrieve a value of an array at an index which
is outside of the range of the array. In fact, the panic behaviour could occur
at any point: some unforeseen event could have its origin at a source that lies
outside the scope of the specification. Of course, manufacturers of interlockings
would have to be constrained in when panic behaviour actually may occurs: it
should not occur when there is no cause for alarm.

The result of going into panic mode is that the input buffer is emptied
and the statement in the panic clause is carried out immediately, terminating
whatever it was doing instantly. In the example, we have chosen to send a
telegram PO1 to the logistic level, with as datum the name of the component
itself (self).

3.4 Systems

We have indicated how to specify LSCs in LARIS. To obtain concrete compo-
nents, constituting a complete control system, such LSCs have to be augmented
with a name and a choice of parameters. This is done in the system part of a
specification.

Consider again the system layout as depicted on page 27. Suppose we wish
to specify the subsystem containing as components just Signall and Section3.
Suppose also that the LSC with name other has similar parameters as example,
specified in the previous section. The desired subsystem would be specified in
LARIS as follows:

System system_example =
External components = {Signal2}
External ports = {a,b}
Signall other ({(a,Signal?2),(b,Section3)}, {(a,b),(b,a)})
Section3 example ({(a,Signall), (b,Signal2)}, {(a,b),(b,a)})
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Thus, a system begins with the keyword System followed by the naine of the
system. This name is of no real relevance. It is only used to refer to the system.
After this name we find again the symbol ‘=", followed by the set of external
components and the set of external ports.

The set of external components is used to specify names of components that
are not part of the specification, but to which reference is made nevertheless.
For instance, the name Signal2 is used in a parameter of example. We need
to know, somehow, that this string is of type Component. This is now simple;
it is a part of the set of external components, so its type can be deduced from
this fact.

For similar reasons we must include the set of port names that are not part
of the subsystem under scrutiny. In the example, we have placed the port
names a and b in this set, although we could have left the set empty, as a and
b occur as port names in the LSC example, so the types of these symbols are
already determined.

It is not necessary (in fact, not allowed), to put Log and Inf in the set of
external components. These are assumed to be part of any system: their types
are predetermined. Likewise, the set of external ports may not contain the port
names log, inf, left, and right.

After the definition of these sets we find two component bindings. These
consist first of a component name, then the name of the LSC to which it is to be
bound, and then a list of parameters that this LSC requires. These parameters
are simply expressions of the correct type, but without variables.

We have now informally described all parts of LARIS. A specification con-
sists of a number of type definitions, a number of LSCs, and a system declara-
tion. The description of LARIS is formalized in Sections 4 and 5.

3.5 LARIS versus EURIS

We look at LARIS from the perspective of EURIS, and list a number of im-
portant differences between these two formalisms.

1. EURIS allows more nondeterminism within components than LARIS.
This behaviour manifests itself in the interpretation of multiple one-shots
and toggles. An example is presented below.

When the AO1-telegram is processed and the one-shot X01 is set, two
internal telegrams, corresponding to the two flows of X01, are placed
in the input buffer, in an arbitrary order. Furthermore, placing these
telegrams in the buffer is not an atomic action, as it is possible that the
telegramn A02 is placed in the buffer between the two X01-telegrams.
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In EURIS, events that are not explicitly ordered may occur in any order.
LARIS takes issue with this philosophy. It is to the advantage of the
size of the state-space if events are ordered as much as possible by the
specification. Interactions between components are not available for such
an ordering, but activities within a single component definitely are.

This viewpoint has as a consequence that a LARIS translation of the
above would only exhibit some of the possible behaviours of the EURIS
specification. We present here one possible translation, where we have
chosen to execute the top X01-flow before the bottom one.

LSC ordering (Eb:Component; Pb:Port) =
vars X01,Y01:Bool

initial skip

mes a ? A01() = X01Q)
mes a ? A02() = Y01:= true

proc X01() = if ~“X01 then {X01:= true; ! X010}

mes 7 X01() =
X01:= false;
if Y01
then Eb |> Pb | B02Q)
else Eb |> Pb ! B0O1();
Y01:= true

panic Log |> log ! PO1(self)

The one-shot is modelled by means of the procedure X01, which first
tests whether the one-shot is already set. If not, it sets the one-shot
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and places a single telegram in the buffer, instead of the two found in the
EURIS specification. The flow corresponding to this telegram first unsets
the one-shot and then simply concatenates the two flows in the EURIS
specification.

The LSC has two parameters, Eb and Pb, the first representing the com-
ponent to which the b-port is connected, and the second the port on Eb
to which the b-port is connected. These are needed when one wishes to
send a telegram along the b-port.

LARIS allows the sending of multiple external telegrams within one flow.
Thus, the following could be part of a single LARIS flow:

Eb |> Pb ! A01(); Log {> log ! BO1()

This first sends A01 to port Pb of component Eb and then a telegram BO1
to the logistic level.

To achieve a similar effect in EURIS, one needs to resort to one-shots:

&
X01

TOI
&

~-——=1—————b™ A0l

If the one-shot is invoked purely for reasons of sending two telegrams, it
is obvious that the LARIS description is simpler, shorter, and likelier to
avoid undesired behaviour, such as interference by external telegrams.

. In EURIS, route telegrams are sent along route ports, while central tele-

grams are passed on using central lists. In principle, a central telegram is
sent from one component to another, using only the name of the current
component, which is recorded in the central list, and the direction of the
central telegram.

In LARIS this concept is taken to its logical conclusion: any component
can send a telegram to any other component, provided the name of the
intended recipient is known. The idea of EURIS that a telegram is re-
ceived on a certain port, although this information could be incorporated
into the telegram itself, is retained in LARIS.

Thus, LARIS allows more freedom in communication than EURIS. For
instance, whereas in EURIS only a single central list is ever used, in
LARIS one could in principle use more than one such list of components.
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Also, in EURIS, telegrams are usually sent along certain ports. This does
not happen in LARIS. In LARIS it is possible for a component without
ports to send signals to the port of another component.

4. In EURIS it is often not entirely clear which information is carried by
a telegram. In principle every telegram-field is present in any telegram,
although only a limited few are used, or even relevant, for specific tele-
grams.

In LARIS, it is always clear which information is carried by a telegram:
it is precisely the information carried in its list of data, in combination
with its name.

5. In EURIS internal telegrams carry no data, while in LARIS this is pos-
sible.

6. LARIS has the ability to define enumerated finite types. Where these are
useful, EURIS often has to resort to using the sort Int, which is usually
too large a type for the application one has in mind.

7. LARIS has an explicit means for dealing with the arrival of unexpected
telegrams and fatal errors discovered during message handling, or for
dealing with any other type of calamity, by means of the panic procedure.
EURIS has no means of specifying the behaviour of a component, should
this happen.

3.6 Translating EURIS into LARIS

LARIS is meant to be a textual representation of (an interpretation of) EURIS.
We describe a possible translation of some EURIS constructions into LARIS.
We have already seen some indications of how such a translation could be
achieved. We focus on two EURIS constructions, namely toggle-variables and
central telegrams. Hopefully, the reader will be able to conceive of transiations
of other EURIS constructions by analogy.

3.6.1 Toggles

First, let us see how to deal with ‘toggles’ or ‘$’-variables in LARIS. As an
example we take a part of UniSpec [16], namely a portion of page 5 of the
track specification (July 1, 1997), which contains a number of such variables.
The portion of interest is reproduced in Figure 5. The translation of this EURIS
LSC into a LARIS LSC would look as follows:

LSC track
(Ea, % Component connected to the a-port.
Eb:Component; % Component connected to the b-port.
Pa, % Port on Ea connected to the a-port.

Pb:Port) % Port on Eb connected to the b-port.
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Figure 5: Part of the specification of a track, focusing on toggles.

vars TSU,TSD,TSC, % Three toggle-variables
TRL,FITa,FITb:Bool

initial ! TSUQ; ! TS0O);
% Initially, fire the three toggles.

! TSC()

mes a? I00() = FITa:= true; if TSC then IOla()

proc I01a() =
vars TS:Bool

if TSC
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then TS:= true
else TS:= false;
Ea |> Pa ! I01(TS)

mes b? I00() = FITb:= true; if TSC then I01b()

proc I01b() =
vars TS:Bool
if TSC
then TS:= true
else TS:= false;
Eb |> Pb ! I01(TS)

mes inf? X04(TS:Bool) =
if TS
then {TSU(true); TSOflow()}
else {TSU(false);
if TRL then TSO(true);

TSC(true)}
proc TSU(b:Bool) = if TSU =/= b then {TSU:= b; ! TSUQ}
proc TSO(b:Bool) = if TS0 =/= b then {TSO:=b; ! TSOO}
proc TSC(b:Bool) = if TSC =/= b then {TSC:= b; ! TSCO}

mes ? TSO() = if TSU then TSO0flow()
proc TSOflow() = if “TSO then TSC(true)

mes ? TSC() = if FITa then I01a();
if FITb then I01b()

Note that the above LARIS LSC is in fact not correct, syntactically. There are
two items missing,.

First, at various places an internal telegram TSU is sent, but there is no
response defined for such telegrams. Such a response is also not present in the
partial EURIS specification. If a complete specification were given, we would
have to define the appropriate response.

Second, there is no panic statement. This is also missing in the EURIS
specification (naturally, because EURIS has no means of expressing these).
One could choose to add panic Log |> log ! PO1(self).

A literal translation of a EURIS specification sometimes yields LARIS state-
ments that could be expressed more succinctly. For instance, consider the body
of the I01a procedure definition. This whole body could be replaced by the
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single statement:
Ea |> Pa ! I01(TSC)

A similar remark holds for the definition of I01b.

3.6.2 Central telegrams

We consider the translation of central telegrams into LARIS. There are really
two uses of such telegrams in EURIS. First, a central component may wish to
set the values of internal variables of certain peripheral components. In this
case, the central component is the cause of the activity. Second, a number of
components may report certain values to a common central component, which
may then act upon the values it receives. We present examples illustrating
these two uses, and show how these constructions may be uniformly translated
into LARIS.

First, consider the EURIS LSCs as depicted in Figures 6 and 7. The LARIS
translation for active centers is the following. It asks for two parameters, a list
of components (its central list), and the length of this list. When a central
telegram CO1 is to be sent, it sends along this central list, together with a
pointer. At the start of the central list the name of the warning device is
placed. This ensures the eventual return of the telegram to this device. The
pointer indicates where we are in the central list. This information is used
when the central telegram initiates another one.

TST

Lol

C01 &= 1 co1

0~=—"""C02

Figure 6: LSC for ‘ACTIVE CENTER’.

LSC active_center (MyList:Component[Int]; MyLength:Int) =
vars TST:Bool

initial skip

mes right? CO1(List:Component[Int]; Length,Pointer:Int) =
TST:= true
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Figure 7: LSC for ‘PASSIVE PERIPHERY".

mes left? CO2 (List:Component[Int]; Length,Pointer:Int) =
TST:= false

mes log? LO1() =
vars List:Component [Int]
List:= MyList;
List[0] := self;
List[1] |> right ! CO1(List,MyLength,1)

panic Log |> log ! PO1(self)

The LSC for passive peripheral components does not need a central list as a
parameter, as it never actually sends a central telegram of its own accord.

LSC passive_periphery (TST:Bool) =
vars SET:Bool

initial skip

mes right? CO1(List:Component[Int]; Length,Pointer:Int) =
if TST
then SET:= true;
Pointer:= (Pointer+1) mod (Length+1);
List[Pointer] |> right ! CO1(List,Length,Pointer)
else sendCO2(List,Lenght,Pointer)

mes left? CO2(List:Component [Int]; Length,Pointer:Int) =
sendC02(List,Lenght ,Pointer)

proc sendC02(List:Component[Int]; Length,Pointer:Int) =
if Pointer > 0O
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then Pointer:= Pointer-1
else Pointer:= Length;
List [Pointer] |> left ! CO2(List,Length,Pointer)

panic Log |> log ! PO1(self)

A typical system layout using such LSCs is depicted below:

| ACTIVE CENTER

| C

EL_LIST=PI,P2

 E— ———]
PASSIVE PERIPHERY ’-PASSIVE PERIPHERY J

L P L 2

EL_LIST= EL_LIST=

TST=1 TST=0

In LARIS this corresponds to the following:

System active =
External components = {}
External ports = {}
C active_center({(1,P1),(2,P2)}:Component [Int],2)
P1 passive_periphery(true)
P2 passive_periphery(false)

We consider an example where peripheral components pass values to a warn-
ing device of their own accord. A concrete example of this may be found in
UniSpec [16], namely in the relation between a series of approach monitors and
a single warning device. We adopt a simplified version of this concrete example:
Figures 8 and 9 contain the EURIS LSCs and Figure 10 contains a potential
layout of such components.

The translation into LARIS of such a system yields the following specifi-
cation. First, we have a type definition. In the LSC above we see that the
telegram-field AM may take three values: 0, 1, and 2. In EURIS one chooses the
type Int for AM, although Int allows many more values. We let AM be of type
AMS (Approach Monitoring Status), a type with three inhabitants: occupied,
complete unoccupied, and incomplete unoccupied, represented in LARIS
by 0, 1, and 2, respectively.

AMS = {occupied,
complete_unoccupied,
incomplete_unoccupied}
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Figure 8: LSC for ‘WARNING DEVICE’.
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Figure 9: LSC for ‘APPROACH MONITOR’.

Next, we give a definition of an LSC for warning devices. A warning device
does not need a central list as it does not send central telegrams of its own
accord. The presence of a multivar CAPI in the EURIS LSC for warning devices
necessitates a list as a parameter in the LARIS LSC for warning devices, which
we call Monitors. In EURIS, a multivar keeps track of a number of values, one
for each component from which values may be expected. Monitors is a list of
these components. In the case of the warning device, these are all approach
monitors. Number is intended to be a positive integer, representing the number
of approach monitors to which the warning device is connected. The values of
Monitors at indices from 1 to Number yield the relevant components.

LSC warning_device (Monitors:Component[Int]; Number:Int) =
vars WDT:Bool; CAPI:Bool[Component]
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Figure 10: Layout featuring a warning device and two approach monitors.

initial skip

mes right? TO2(E:Component [Int]; AM:AMS) =
WDTQ) ;
if AM == occupied
then {CAPI[E]:= true; E |> right ! U010}
else CAPI[E]:= false

proc WDT() =
if “WDT then {WDT:= true; ! WDTQ}

mes 7 WDT() =
vars i:Int; TESTCAPI, WD:Bool
TESTCAPI:= false;
i:=1;
while i <= Number do
TESTCAPI:= TESTCAPI | CAPI[Monitors[il];
if TESTCAPI
then WD:= false
else WD:= true;
Inf |> inf ! WO5(self, WD)

panic Log |> log ! PO1(self)

Next, we give a definition of an LSC for approach monitors. From the
example on page 35 one might expect a central list as a parameter. This would
definitely be a more uniform approach. However, using a list for a situation
such as it exists between a warning device and its approach monitors would be
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overkill. The approach monitor initiates a central telegram T02, which it sends
to the warning device. For this it only needs to know the name of this warning
device. TO2 must carry the name of the approach monitor (using self) for the
following two reasons. First, a multivar may have to be updated, and then we
have to know which version of the multivar to adapt. Second, the telegram
U01 may be sent back to the approach monitor, and the warning device has to
know the name of the component to send this telegram to.

LSC approach_monitor (E:Component) =
vars API:Bool

initial skip
mes b? E04() = E [> right ! T02(self)
mes right? U01() = API:= true

panic Log |> log ! PO1(self)

Finally, we present the system declaration itself, which consists mainly of
filling in the required parameters for the specific warning device and approach
monitor in question.

System warning_device_and_approach_monitors =
External components = {}
External ports = {}
WD warning_device ({(1,A1),(2,A2)}:Component [Int], 2)
Al approach_monitor (WD)
A2 approach_monitor (WD)

3.7 LARIS versus EURISpro

EURISpro [4] is an interpretation of EURIS in terms of discrete-time process
algebra. We compare EURISpro to both EURIS and LARIS. EURISpro
differs from, or is more explicit than, EURIS in the following respects.

1. EURISpTo presupposes a discrete time domain and a global clock. All
components are synchronized to this clock.

2. EURISpTto assumes that communication is synchronous.

3. In EURISpr0, a flow can send at most one telegram to one other com-
ponent, i.e., there are no broadcasts.
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4. In EURISp70, a telegram-generating process can generate only one in-
ternal telegram at the time, i.e., expressions like the one depicted below

are excluded.
&

ABC
& >

< &

5. In EURISp70, internal telegrams are generated at the border of a time
slice and its successor. Hence, the telegram-generating processes (vari-
ables) @, 7#, and ># count in time slices, and for the generation of tele-
grams they are synchronized on slice borders. Also, the timer # counts in
time slices, and the telegram-generating processes $ and & do not generate
telegrams on-the-fly, but on slice borders.

6. EURISpTo does not allow the use of defaults. Especially, reference to a
telegrain-field that has not been assigned before results in a deadlock.

Furthermore, some simplifications have been excluded from1 EURISpro,
in order to keep the definitions focused on the core semantical aspects. In the
category of these simplifications fall: a variable declaration declares one object,
e.g., declarations like

a/b %@

ABC and XYZ
are excluded; functions and so-called boxes are excluded; and, case statements
are excluded.

Distinctions between LARIS and EURISpro stem from four sources. First,
LARIS is a symbolic syntax that is fully defined (including static semantics)
plus a semantics, whereas EURISp7( is a large subset of EURIS its informal
graphical syntax plus a semantics. Second, LARIS is a generalization of EURIS
notions, whereas EURIS p7o is a restriction. Third, LARIS and EURISp71o
differ in some semantical choices. Fourth, LARIS and EURISp7o differ in
the style of presentation of the semantics: respectively, a declarative style in
standard logical notation and set theory versus a procedural style in algebraic
specification and process algebra. In the following paragraphs the latter three
sources of differences are expounded on.

From the differences between EURISp1o and EURIS that were listed just
above, and the differences between LARIS and EURIS in Section 3.5, one can
infer a number of distinctions between LARIS and EURISpro. Most notable
are the following.

e LARIS offers one large uniform communication space, i.e., one addresses
a component, not a port. EURISpro has the typical EURIS route ports.
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e LARIS is fully and strongly typed and offers a richer set of types and
operations. EURISpro offers the EURIS types and operations, and is
only typed to some extent.

e LARIS offers default values. EURISpro generates a deadlock when a
non-existing or a non-initialized variable is referred to.

e LARIS facilitates instantiation and binding of components. EURISpto
does not offer this.

e In LARIS, sending a telegram is just an action. In EURISpTo, sending
a telegram can only be used as the terminal action of a flow.

LARIS and EURISpro are both based on discrete global time; the time slice
forms the basic unit for timed processes. Distinctions are found in other se-
mantic choices.

e LARIS has asynchronous communication, which is modelled by means of
buffers in channels. EURIS p7¢ has synchronous communication.

e Corruption of telegrams is modelled and operationally catered for by
means of a panic procedure. EURISp7¢o does not model corruption.

o Generation of telegrams by $ and & variables in LARIS is dynamic, while
in EURISpTo the generation of such telegrams is time-dependent.

Finally, the presentation of the semantics. LARIS and EURISpro both have
a formal semantics. A formal semantics is an assignment from the well-formed
expressions of a language to a collection of mathematical constructions. Es-
sentially, the formal semantics of both languages use the same type of math-
ematical constructions: process graphs. The difference discussed here, not to
be confused with the semantical choices discussed above, is in the presenta-
tion. LARIS follows a direct approach in the sense that LARIS expressions
are mapped directly to process graphs. In EURISpTo one level of indirection
is used. EURIS expressions are translated into discrete-time process algebra.
In turn the standard interpretation of this specification language is based on
process graphs.

4 Syntax and static semantics

We define the formal syntax of LARIS specifications. The syntax has two parts.
The first part is a context-free grammar, given in the Syntax Definition Formal-
ism (SDF) [14]. The SDF grammar provides us, amongst other things, with a
syntactic category Specification. The grammar by itself accepts some texts
which we in fact do not deem to be well-formed. For instance, the grammar
has no means of detecting type clashes. The bare bones of the SDF grammar
are therefore augmented with a so-called static semantics. This deals precisely
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with such matters as type clashes, making sure that when a variable is used, it
has been declared, and the like.

Section 4.1 provides the SDF grammar. Section 4.2 introduces some nota-
tional conventions that allow us to shorten the presentation somewhat in the
remainder. The syntax has some superfluencies in the sense that some con-
structions exist mainly for notational ease, while not adding to the expressivity
of the language. Thus, Section 4.3 lists some syntactic constructions that are
thereafter viewed as mere abbreviations. Sections 4.4-4.11 deal with the static
semantics of LARIS.

4.1 Formal syntax in SDF

We present the context-free syntax of LARIS in SDF. This syntax is augmented
later on with a static semantics. The end-result is a notion of ‘syntactic’ for
LARIS constructions. The SDF grammar has a modular structure. Every
module exports a list of new sorts. These are the syntactic categories that are
defined in the grammar. By convention, these are written with a capital.

The first three modules, Layout, Names, and Numbers define some lerical
syntaz. The module Layout deals with the layout of the text: tabs (\t), spaces
(‘ "), and newlines (\n) are not considered part of the LARIS specification,
but merely exist for notational convenience. Similarly, anything after a % is
considered as comment.

The module Names indicates which strings are allowed as identifiers. A Name
is any string consisting of letters and numbers, interspersed with underscores.
A Name must begin with a letter, and may not end with an underscore. By
an SDF convention, keywords are excluded from Names. The module Numbers
indicates which strings are allowed as natural numbers. All modules thereafter
provide a context-free syntax to define new sorts. Most constructions in the
context-free part are self-explanatory. The symbol + stands for one or more
and * for zero or more occurrences. For instance Clause+ denotes one or more
Clauses and { DataDecl ‘‘;" }* denotes zero or more DataDecls separated
by semicolons, but without a trailing semicolon.

{right} means that an operator is right-associative, (e.g., for concatenation
of statements, S; S’; S’’ denotes S; (S’; S’?)), while {left} means that
an operator is left-associative (e.g., for addition of natural numbers, n+n’+n’’
denotes (n+n’)+n’’), and {non-assoc} denotes that an operator is not asso-
ciative (e.g., subtraction on natural numbers is non-associative). The phrase
{bracket} says that the defined construct is not an operator, but just a way
to disambiguate the construction of a syntax tree. The priorities section
resolves ambiguities in parsing; for example, subtraction ‘-’ has highest pri-
ority while disjunction ‘|’ has lowest priority, when parsing expressions with
ambiguous bracketing.

module Layout
exports
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lexical syntax
[\t \nl+ -> LAYOUT
"%" “[\nl* "\n" -> LAYOUT

module Names
exports
sorts Name NonemptyNameSet NameSet
lexical syntax
[a-zA-Z] [0-9a-zA-Z_]*[0-9a-zA-Z]* -> Name
context-free syntax
"{" {Name ","}+ "} -> NonemptyNameSet
*{" {Name ","}* "}" —-> NameSet

module Numbers
exports
sorts PosNumeral Numeral
lexical syntax
[1-9] [0-9]* -> PosNumeral
"o -> Numeral
PosNumeral -> Numeral

module Types
imports Layout Names Numbers

exports
sorts BasicType Index ArrayType DataType ClockType Type
TypeDef
context-free syntax

"Bool" -> BasicType
"Int" -> BasicType
"Component" -> BasicType
"Port" -> BasicType
Name -> BasicType
BasicType -> Index
PosNumeral —> Index
BasicType "[" {Index "," }+ "]" -> ArrayType
BasicType -> DataType
ArrayType -> DataType
"Timer" -> ClockType
"Timeout” =-> ClockType
"Cycler” => ClockType
DataType -> Type
ClockType ~-> Type

Name "=" NonemptyNameSet -> TypeDef

module Declarations
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imports Layout Names Types
exports

sorts DataDecl DataDecls Decl Decls ParDecls

context-free syntax

{Name ","}+ ":" DataType
{Name n’"}+ non Type
"vars" {DataDecl ";"}*
“vars" {Decl u;u}*

n(u {DataDecl ";u}* u)n

module Expressions

->
=->
->
->
->

DataDecl

Decl

DataDecls

Decl

S

ParDecls

imports Layout Names Numbers Types

exports

sorts Expr Datum Entry Array Portcons

context-free syntax
n 1ogll
n inf "
"left"
"right"

Name

Iltrue "

"false"

Numeral

" Self n

IILogII

" Inf "

Portcons

Expr "[" {Expr ","}+ "]"
Expr "+" Expr
Expr "*" Expr
Expr "-" Expr
"n_n Expr

Expr "mod" Expr
Expr "div" Expr

Expr """ Expr
Expr "|" Expr
n=~n Expr

Expr "==" Expr

Expr "=/=" Expr
Expr "<" Expr
Expr ">" Expr
Expr "<=" Expr
Expr ">=" Expr
"active" Name

->
->
->

Portcons
Portcons
Portcons
Portcons

Expr

Expr

Expr

Expr

Expr

Expr

Expr

Expr

Expr

Expr {left}
Expr {left}

Expr {non-assoc}
Expr

Expr {non-assoc}
Expr {non-assoc}
Expr {left}

Expr {left}

Expr

Expr {non-assoc}
Expr {non-assoc}
Expr {non-assoc}
Expr {non-assoc}
Expr {non-assoc}
Expr {non-assoc}
Expr
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"value" Name -> Expr

Array ":" ArrayType -> Expr

u(u Expr H)" -> Expr {bracket}

Expr -> Datum

g M -> Datum

u(u {Datum n’n}+ n’n Expr u)u -> Entry

"{" {Entry ","}* "}" -> Array

priorities

Expr "*" Expr -> Expr >
Expr "div" Expr -> Expr >
Expr "+" Expr -> Expr >

Expr "-" Expr -> Expr >
Expr "mod" Expr -> Expr >
Expr "==" Expr -> Expr >

Expr "=/=" Expr -> Expr >
Expr ">" Expr -> Expr >
Expr "<" Expr -> Expr >
Expr "<=" Expr -> Expr >
Expr ">=" Expr -> Expr >
"~ Expr -> Expr >

Expr """ Expr -> Expr >
Expr "|" Expr -> Expr

module Statements
imports Layout Names Expressions
exports

sorts Statement Args Telegram Telegrams Clause

context-free syntax

n(" {Expr n’n}* u)u -
Name Args ->
Name ":=" Expr ->
Name u[u {Datum n’n}+ n]u "e=n Expr ->
Expr "|>" Expr "!" Telegram ->
"1" Telegram ->
">>#" Name Expr "!" Telegram ->
"@" Name Expr "!" Telegram ->
"start" Name ->
"stop" Name ->
"skip" ->
Name Args ->
"if" Expr "then" Statement ->

"if" Expr "then" Statement

Args
Telegram

Statement
Statement
Statement
Statement
Statement
Statement
Statement
Statement
Statement
Statement
Statement
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"else" Statement -> Statement
"while" Expr "do" Statement -> Statement
"case" Name "in"
n{" Clause+
"otherwise" ":" Statement "}" -> Statement
Statement ";" Statement -> Statement {right}
n{" Statement "}" -> Statement {bracket}
Expr ":" Statement -> Clause

module Spec

imports Layout Names Types Declarations Expressions Statements

exports

sorts Body Behaviour LSC Binding System Specification Port

context-free syntax
DataDecls Statement

Statement

Portcons

Name

"proc" Name ParDecls "=" Body

"mes" Port "7" Name ParDecls "=" Body
"mes" "?" Name ParDecls "=" Body

"LSC" Name ParDecls "="
Decls
"initial" Body
Behaviourx*
"panic" Body

Name Name Args

"System" Name "="

"External" "components" "=" NameSet
"External" "ports" "=" NameSet
Binding+

TypeDef* LSC+ System

->

->

->

=->

Body
Body

Port
Port

Behaviour

Behaviour
Behaviour

LSC

Binding

System

Specification

Hereafter the names of the syntactic categories defined above are used for
the sets of all syntactic strings of that category. For instance, Name denotes
the set of all strings of category Name. An assumption of SDF we have already
alluded to is of relevance here: it is assumed that categories defined in the
lexical syntax, such as Name, do not contain keywords explicitly used in the
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context-free syntax:
Definition 4.1 (Keyword) The keywords of LARIS are:

Bool, Int, Component, Port, Timer, Timeout, Cycler, vars, true, false,
self,Log, Inf, log, inf,left, right, mod, active, value, start, stop, skip,
if,then, else,while, do, case, in, proc,mes, LSC, initial, panic, System,
External, components, ports

O

Similarly, BasicType is the union of Name and {Bool, Int, Component,Port}.
Instead of saying ‘Bool € BasicType’ we may say ‘Bool is a BasicType’, mean-
ing the same.

4.2 Notational conventions

In the remainder of this paper some mathematical notational conventions are
frequently used. These are listed below:

® ap,...,a, denotes a list of length n + 1. If n = 0, ay,...,a, represents
the singleton list ag, if n = 1, it represents ag, a1, et cetera.

If the first index in a list is 1, this indicates the possibility that the list is
empty. Thus ay,...,a, denotes a list of length n. If n = 0, it represents
the empty list, if n = 1, it is the singleton list a;, et cetera.

e In the remainder, indices range over the natural numbers. Thus, if it is
stated that something is true for every i« < k (with k some other natural
number), this means it is true for all natural numbers from 0 to k.

e Vector notation is sometimes used for a sequence of items. Thus d stands
for a sequence dy, ..., d, of some length n.

4.3 Abbreviations

The syntax allows some constructions that in the remainder of this paper are
viewed simply as abbreviations for other constructions. We list these abbrevi-
ations below:

1. We view a case-in statement

case X in
{ E() LTy
FE, /.

otherwise : 7w,y }
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as an abbreviation for:

if X ==E,
then my
else

if X==F,
then m,
else mh41

This means that while in LARIS we may use the case-in statement, in
the static and operational semantics we make no further mention of it.

2. An if-then statement without an else clause is also considered an ab-
breviation: if F then 7 is short for if E then 7 else skip.

3. A Decls or DataDecls of the form
vars XO,(Jv ERR} Xm),(') : TO; cee s XO,my KRR} Xu,,,,m : T|m
where for some j < m we have n; > 0, is an abbreviation for

vars XO,() : TO; e 3 Xnu,() oY XO,m o SR Xn,,,,m T

4. Similarly, a ParDecls of the form
(XU,()y ey Xn(,,() SN - X(),nu ey Xn,..,m : Tm)
where for some j < m we have n; > 0, is an abbreviation for

(XU,U . :TO; ey Xn.,,() : TO; cee gy X(),m : Tm; cee ‘Xn,,,,m : I—Tm)

5. In the syntax, a Body is an optional DataDecls followed by a Statement.
We view Bodys without a DataDecls as an abbreviation. Thus, a Body
7, where 7 is a Statement, is short for vars w. This allows us to refer
to any body as:
vars X3 :Ty; ... X Ty, @

without having to consider the special case where there is no variable
declaration.

4.4 Signatures

In this section we define so-called signatures. Signatures are merely represen-
tations of (parts of) LARIS specifications, using set-theoretical notation, with
some of the information that is present in this specification already extracted,
so that in the future we have easy access to this information. For example,
the signature of an LSC has explicitly available, as a set, the names of internal
telegrams for which it has a response.

In this section we give a general definition of the notion of a signature, and
in the next section we assign specific signatures to LARIS constructs.
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Definition 4.2 (Typed Name) A typed Name is a pair (N:T), where N is a
Name and T is a Type. o

Definition 4.3 (Argument typed Name) An argument typed Name is a pair
(N:S), where N is a Name and S is a list of DataTypes. |

Definition 4.4 (Body signature) A body signature is a pair (V,7) where
V is a set of typed Names and 7 is a Statement. If B is such a body-signature,

then:
B.Vars =V

B.Statement =
O

Definition 4.5 (External telegram signature) An external telegram sig-
nature is a triple (R, P, B) where:

e R is a pair of Names;
e P is a set of typed Names;
e B is a body signature.

If M is such a signature, then:

M Reaction
M Pars
M .Body

[
oo liaviis

O

Definition 4.6 (Internal signature) An internal signature is a quadruple
(K, N, P, B) where:

K € {mes,proc};

N is a Name;

P is a list of typed Names;
e B is a body signature.
If I is such a signature, then:

IKind =
I.Name =
I.Pars =
I.Body =

Wz =

An internal telegram signature is an internal signature I with I Kind = mes.
A procedure signature is an internal signature I with I.Kind = proc. |
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Definition 4.7 (Behaviour signature) A behaviour signature is a 9-tuple
of the form (P, Et,It,R, I, Pt, Me, Mi, Pr), where:

e P and I are sets of Names;

o Et, It, and Pt are sets of argument typed Names;
e R is a set of pairs of Names;

o Me is a set of external telegram signatures;

o Mi is a set of internal telegram signatures;

e Pr is a set of procedure signatures.

If B is such a signature, then:

B.Ports = P
B.ExtTypes = Et
B.IntTypes = It
B Reactions = R
B.Internal = 1T
B.ProcTypes = Pt
B.ExtTelegrams = Me
B.IntTelegrams = Mz

B .Procedures Pr

Definition 4.8 (LSC signature) An LSC signature is a G-tuple:
(N,P,V,B, I, Pa)
where:

e N is a Name;

P is a list of typed Names;

e V is a set of typed Names;

e B is a behaviour signature;

e I and Pa are body signatures.

If A is such a signature, then:

A.Name = N
A.Pars = P
A.Vars =V
A.Behaviour = B
A Initial = T
A.Panic = Pa
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Definition 4.9 (Type signature) A type signature is a finite set of triples
of the form (T, S, D) where T and D are Names, and S is a finite set of Names
such that D € S.

If X = (T, S, D) is an elen >nt of a type def aition signature then:

X.Type =T
X.Set S
X.Default = D

O

Definition 4.10 (System signature) A system signature is a quadruple
(E, Bo, P, Bi), where:

e FE Bo and P are sets of Names;
e Bi is a set of Bindings.
If S is such a signature, then:

S.External = F

S.Bound = Bo
S.Ports = P
S.Bindings = Bi

O

Definition 4.11 (Specification signature) A triple (T, L, S) is a specifica-
tion signature if:

o T is a set of type signatures;
e L is a set of LSC signatures;
e S is a system signature.

If ¥ is such a signature, then:

Y. Types =
2.LSC =
3.System

»t N

4.5 Assigning signatures

Now that we have specified the various types of signatures and how to access
their information, we can assign specific signatures to various constructs in
LARIS. This is done via the function Sig.
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Definition 4.12 (Signature of a Body) Lct 3 be a Body of the form
vars X; : Ty5... ; X' Ty @

where Xy,...,X, are Names, Ty,...,T, are DataTypes, and 7 is a Statement.
Then Sig(/3) is the body signature B with:

B . Vars = {{&EiT1), ..., Xu:To)}
B.Statement = =
a
Definition 4.13 (Signature of an external flow) Let B be a Behaviour

of the form
mes p? N(X1:Th;...; Xpn:Tp) =0

where X1,...,X,, p and N are Names, T1,...,T, are DataTypes and 3 is a
Body. Then Sig(B) is the behaviour signature S with:

S.Ports = {p}

S.ExtTypes = {(N:(Th,....,T))}

S.ExtTypes = 0

S.Reactions = {(p,N)}

S.Internal = 0

S.ProcTypes = 0

S.ExtTelegrams = {((p, N), ((X1:T1),---,{(X,.:T0)), Sig(B))}
S.IntTelegrams =

S.Procedures =0

0

Definition 4.14 (Signatures of an internal flow) Let B be a Behaviour
of the form
mes 7 N(X,:Ty;...; Xpn:Ty) =0

where X1,...,Xn, p and N are Names, T1,...,7T, are DataTypes and 3 is a
Body, then Sig(B) is the behaviour signature S with:

S.Ports = 0

S.ExtTypes =0

S.IntTypes = {(N:(Th,...,T.))}

S.Reactions =0

S.Internal = {N}

S.ProcTypes = 0

S.ExtTelegrams = {

S.IntTelegrams = {(mes, N, ((X1:Th),...,(Xn:Thn)), Sig(3))}
S.Procedures = 0
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Definition 4.15 (Signature of a procedure definition) Let B represent o
Behaviour of the form

proc N(Xy:Ty;...; Xn:T) =10

where X1,..., X, and N are Names, T}, ...,T,, are DataTypes and /3 is a Body.
Then Sig(B) is the behaviour signature S with:

S.Ports = 0
S.ExtTypes
S.IntTypes
S.Reactions
S.Internal
S.ProcTypes
S.ExtTelegrams
S.IntTelegrams
S.Procedures =

[ I | |

[

0
0
0
0
é(N (T, T))}
0
{

(pI'OC N, ((Xl:Tl)v LERR <X":Tn))’ Szg(ﬁ)}
O

Definition 4.16 (Signature of a sequence of Behaviours) If B is a pos-
sibly empty sequence B; ... By, of Behaviours such that

SZg(Bl) = (Pi,Eti,]ti,Rj,Ii,Pti,Afei,ﬂfii,PTi)
for every 1 <i < k, then:

Sig(B) = (Ulgisk B, U15i5k Et;, Ulsisk It;, U15i5k R;, UlSiSk I,
Ulgisk Pt;, UlSiSk Me;, UlSiSk Mi;, UlSiSk Pr;)

Definition 4.17 (Signature of an LSC) Let L be an LSC of the form

LSC N(X):Ty;...; Xn:Tn)=
vars Y1 :Uq;... ; Yoo i UV
initial &

B
panic (3

where X1,...,X,,Y1,...,Y,, and N are Names, T1,...,T, are DataTypes,

Uy,...,Un are Types, o and (3 are Bodys and B is a (possibly empty) sequence
of Behaviours. Then Sig(L) is the LSC signature A with:

A.Name = N

A.Pars = ((Xi:Th),.., (Xn:Th))

A Vars = {(Yi:Uh),...,(Y:Uh)}

A.Behaviour = Sig(B)

A.Initial = Sig(a)

A.Panic = Sig(B)
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Definition 4.18 (Signature of a TypeDef) Let T be a TypeDef of the form
N ={N,..., N}
where Ny,..., N, and N are Names. Then Sig(T) is the type signature S with:
S.Type = N

S.Set = {No,...,Nn}
S.Default = N

O

Definition 4.19 (Signature of a System) Let S be a System of the form

System N =
External components = {Ey,...,E,}
External ports = {Py,...,Pn,}
Co Ny Ao
Cr N, Ax

where Ey,...,E,, P,...,Py, Cq,...,Ck, No,...,Ni, and N are Names and
Ao, ..., A € Args. Then Sig(S) is the system signature S with:

S.External = {Ei,...,E,}
SBound = {C,...,Ci}
S.Ports = {P,...,Pn}
S.Bindings = {C; N; A; |i <k}

]

Definition 4.20 (Signature of a Specification) If S is a Specification
of the form Ty... Ty Lg...Ly, S, where Ty, ..., Ty, are TypeDefs, Lg,...,Ln
are LSCs, and S is a System, then Sig(S) is a specification signature ¥ with:

L. Types = {Sig(T1),...,Sig(Ts)}
DLSC = {Sig(Lo),...,Sig(Lm)}
Y. System = Sig(S)

4.6 Types

Fix some specification signature ¥. ¥ contains some definitions of enumerated
types, which we may find in £.Types. Once the names of these additional basic
types are known, we can define the set of X-types.
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Definition 4.21 (X-type)
e The set of L-hasic types is:
BasicTypes: = {Bool, Int, Component, Port} U {T.Type | T € £.Types}.

Note that BasicTypey; "5 a subset of BasicType. The latter contains Names
which do not occur as type names in the list of type definitions of 3.

o The set of L-indices is:

Indexs = BasicTypey, U PosNumeral.

e The set of X-array types is:
ArrayTypes. = {B|[lo,...,I,] | B € BasicTypes, and Iy, ..., I, € Indexs}.

e The set of X-data types is:
DataTypey. = BasicTypey, U ArrayTypey..

o Finally, the set of L-types is:
Typey, = DataTypeg U ClockType.

4.7 Type- and declaration-correctness

This section contains the first part of the static semantics, concerning type-
and declaration-correctness.

Type-correctness ensures that every constant has a unique type, i.e., over-
loading is not allowed. Thus the following sequence of type definitions cannot
be part of a type-correct specification:

Typel = { a, b }
Type2 = { b, ¢ }

as this leaves ambiguous the type of the constant b: it could be either of type
Typel or of type Type2.

As Component and Port are basic types, we need to know which components
and ports are presupposed by a specification:

Definition 4.22 (Component and port) Let ¥ be a specification signature.
The set Componenty. of components of 3 is

3.System.External U ¥.System.Bound U {Log, Inf}
and the set Porty of ports of ¥ is

U A.Behaviour.Ports U X.System.Ports U {1og, inf, left, right}.
Aes.LSC
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Definition 4.23 (Type-correctness) A specification-signature & is said to
be type-correct (or t-correct) if:

1. Componenty, and Portg are disjoint: Components; N Ports = §;
2. If T € . Types then

e T.Set and Componenty, are disjoint;
e T.Set and Ports are disjoint;

o IfT' € £.Types\{T} then T.Name # T'.Name and T.Set and T".Set
are disjoint. O

The second main concept of correctness of this section is declaration-correctness.
This concept deals with two matters. First, declaration-correctness ensures
thiat within a declaration a variable may not be assigned different types. Thus,
X:Bool; X:Int is not part of any declaration-correct specification. In mathe-
matical terms, we wish declaration to represent functions.

The second matter declaration-correctness deals with is the avoidance of
scoping problems. These are avoided by disallowing variables being declared
in a procedure, a message handling, or the initial and panic clauses to overlap
with the global variables of the LSC.

First we define which Names can be variables.

Definition 4.24 (Reserved Name) A Name is X-reserved if it is in
Componentsy, U Ports; U U T.Set

Tex. Types
O

Recall that by an SDF convention, keywords (see Definition 4.1) were already
excluded from the set of Names.

Definition 4.25 (Available Name) An X-available Name is any Name that is
not X-reserved. o

Note that there are only finitely many reserved names and infinitely many
available ones.

Definition 4.26 (X-typed Name) A X-typed Name is a typed Name (X:T') such
that X is a L-available Name and T is a X-type. a

Definition 4.27 (Type function) A -type function 7 is a finite set of -
typed Names that is functional, i.e., if (X:T1),(XT2) € T then T\ = T». |

Definition 4.28 (Type-list) A X-type list is a list ((X1:Th), ..., (X.:T0)) of
E-typed Names such that X,,..., X, are pairwise distinct. 0O
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Definition 4.29 (Domain function) The domain of a set of typed Names S
18:
dom(S) = {X | (X:T') € S for some T}.

]

Definition 4.30 (From type lists to functions) If ((X1:Th),...,(Xn:Ty))
s a list of typed Names then

Set( ((XliTl),...,<Xn!Tn))) = {(XliTl),...,<Xn:Tn)}
a

If L is a ¥-type list, then obviously Set(L) is a X-type function. X-type lists
represent two matters: one, the order in which the variables occur; two, a
type-function, associating a variable with a type. Order is important when in-
stantiating for instance an LSC, a procedure, or a telegram. The type-function
is important for evaluating the type of expressions within the scope of the
declaration. Set extracts this type-function from a type-list, abstracting away
from the order.

Definition 4.31 (Declaration-correctness of a behaviour) Suppose A €
3.LSC, and let
A.Behaviour.ExtTelegrams U
S € A.Behaviour.IntTelegrams U
A.Behaviour.Procedures

S is declaration-correct (or d-correct) with respect to ¥ and A if:
e S.Pars is a X-type list;
e S.Body.Vars is a X-type function;
o The following sets are pairwise disjoint:

dom(Set(A.Pars)) dom(A.Vars)

dom(Set(S.Pars)) dom(S.Body.Vars)
O

Definition 4.32 (Declaration-correctness of an LSC) Let A € X.LSC.
A is declaration-correct (or d-correct) with respect to 3 if:

o A.Pars is a X-type list;

e A.Vars, A.Initial.Vars and A.Panic.Vars are X-type functions;

o dom(Set(A.Pars)) and dom(A.Vars) are disjoint;

e dom(A.Initial.Vars) and dom(Set(A.Pars)) Udom(A.Vars) are disjoint;
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o dom(A.Panic.Vars) and dom(Set(A.Pars)) U dom(A.Vars) are disjoint;

o If
A.Behaviour.ExtTelegrams U
S € A.Behaviour.IntTelegrams U
A.Behaviour.Procedures

then S is d-correct with respect to ¥ and A. o
Definition 4.33 (Declaration-correctness of a specification signature)

A specification signature ¥ is declaration-correct (or d-correct) if every A €
Y.LSC s d-correct with respect to X. m]

4.8 Expressions

Fix a t-correct LARIS specification £. Given a X-type function 7, we can
construct the set of (X, 7')-ezpressions, that is, the set of expressions that may
be built using as parameters and variables the names in 7. Such expressions
can be assigned a definite type (given 7).

We define simultaneously by induction:

1. tr= set Expr(X, T) of (X, T )-expressions;
2. a function types, 1 : Expr(Z, 7) — Typey.

If ¥ is clear from the context, we simply refer to a ‘T-expression’, Expr(7),
and type,. Also, we circumscribe typeg 7(E) = T by ‘E has type T", or ‘E'is
of type T”, when X and 7 are clear from the context.

Variables/parameters: If (X:T) € 7 and T € Types, then X is a 7-
expression of type T.

Inhabitants of basic types:

e true and false are 7-expressions of type Bool.

e If N is a Numeral, then N is a T-expression of type Int.

e If E € Componenty, then E is a 7-expression of type Component.
e If P € Portyg, then P is a T-expression of type Port.

e If T € ©.Types and N € T.Set, then N is a T-expression of type
T.Type.

Self: self is a T-expression of type Component.

Array-positions: Suppose E be a T-expression of type T(ly, ..., I], and let
E,, ..., E, be T-expressions such that, for each ¢ < n:

N_ ) L if I; € BasicTypey;
typer (E:) = { Int if I; is a PosNumeral.

Then E[Ey, ..., E,] is a T-expression of type T
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Arithmetical operations: If E and F' are T-expressions of type Int, then
E+F E—-F, ExF,Emod F,and F div F are T-expressions of type
Int.

Boolean operations: If E and F' are T-expressions of type Bool, then EAF,
and ~ E are T-expressions of type Bool.

Equality: If E and F are T-expressions of the same type T € BasicTypey,
then F == F is a T-expression of type Bool.

Less-than: If £ and F are T-expressions of type Int, then E < Fis a
T -expression of type Bool.

Active and value: If (X:T) € T with T € ClockType, then:

e active X is a T-expression of type Bool;

e value X is a 7-expression of type Int.

Arrays: Let T be a X-type B[ly,...,I;]. Let m > 0, and suppose for each
i <nand 1< j<m one of the following holds:

e either E; ; = *;
e I; is a PosNumeral and E; ; is a T-expression of type Int; or

o I; € BasicTypeg and E; ; is a T-expression of type I;.

Furthermore, for each 1 < j < m, let E,;, ; be a T-expression of type
B. Then

{(E()y], e ,En+1,1), ceny (E()’m, .o 7En+l,m)} : T

is a T-expression of type T'.

4.9 Argument-correctness

Not only expressions but also telegrams have specific types in LARIS. The
type of a telegram is a sequence of data types. In LARIS there are two types
of telegrams. First there are the external telegrams, the ones that are sent
between components. In a well-formed specification all external telegrams with
the same name have the same type. Thus this a global requirement on the whole
specification.

The type-assumptions on internal telegrams are local to the LSC. Within
a single LSC, all internal telegrams with the same name have the same type.
Different LSCs may use the same telegram names for their internal telegrams,
even with differing types. Moreover, it is possible that an external telegram
and an internal one share the same name, without sharing their types.

In this section we deal with the types of telegrams, how to extract these,
and when a specification has no type clashes in this respect. The corresponding
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notion of correctness is argument-correctness. This notion also deals with the
types of defined procedures. The main restriction on these is that procedures
with the same name must have the same type. Furthermore, these types must
be Y-types.

Definition 4.34 (Z-argument typed Name) Let ¥ be a specification signa-
ture. A T-argument typed Name is an argument typed Name (N:(T1,...,Ty))
where each T; is a X-data type. O

Definition 4.35 (X-argument type function) Let ¥ be a specification sig-
nature. A S-argument type function is a set T of X-argument typed Names
such that whenever (N:(Th, ..., Ty)), (N:(Ur,...,Un)) € T then (T1,...,Tn) =
(Uh,...,Un). o

In the following definition we use the term ‘complex Statement’ to refer to any
Statement of one of the forms:

if F thenm; elsems
while Fdon
L5702

A ‘basic Statement’ is then any Statement that is not complex.

Definition 4.36 (ExtSend) Let ¥ be a t-correct specification signature and let
T be a T-type function. ExtSends 1 is a function defined on all Statements as
follows.

If  is a basic Statement then

e ExtSends 7(m) = {(N:(T1,...,Tw))} if ™ is a Statement of the form
E|>p! N(E,,...,Ey)
and each E; is a T -expression of type T;.
e ExtSends, 7(m) = 0, otherwise.
If T is a complex Statement then
o ExtSendy, 7(m) = ExtSendy, 7 (n') if 7 is of the form while E do =’.

e ExtSends 7(m) = ExtSends, 7(m) U ExtSends 7(m2) if m is either of the
form
if F then m; else mq or mp;ma. (]

Note that ExtSend solely extracts the type of external telegrams which the
statement could possibly send. We needed t-correctness in the definition be-
cause otherwise the notion of (X, 7 )-expression would not be defined.

Definition 4.37 (ExtType) Let X be a t- and d-correct specification signature.
Then ExtTypes, is the union of the following sets:
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o A.Behaviour. TelTypes, where A € X.LSC;

e ExtSends. 7(S.Body.Statement), for some A € X.LSC, where

A.Behaviour.ExtTelegrams U
S € A.Behaviour.IntTelegrams U
A.Behaviour.Procedures

and T = Set(A.Pars) U A.Vars U Set(S.Pars) U S.Body.Vars;

e ExtSendy 7(S.Statement), where S € {A.Initial, A.Panic} and T =
Set(A.Pars) UA.Vars U S.Vars. |

By d-correctness 7 is a type-function in each case above.

Definition 4.38 (Argument-correctness) A t- and d-correct specification
signature ¥ is argument-correct (or a-correct) if:

o ExtTypey, is a X-argument type function;

e For each A € ¥.LSC, A.Behaviour.IntTypes is a X-argument type func-
tion.

e For each A € £.LSC, A.Behaviour.ProcTypes is a X-argument type func-
tion. O

The requirement that ExtTypey; is a X-argument type function ensures that for
each occurrence of an external telegram with name N, the cardinality, order,
and typing of its fields is exactly the same. The second requirement in the
definition contains a similar statement for internal telegrams, this time local
to an LSC. The final requirement says that types of procedures are unique to
a name, and that only ¥-types are allowed as arguments.

4.10 Statements

Let ¥ be a t-, d-, and a-correct specification signature and let A € X.LSC.
Given two X-type functions 7 and V with ¥V C 7, we define the set of
(X, A, T,V)-statements: Statement(3,A,7,V). V encompasses the variables,
i.e., those Names that can occur at left-hand sides of assignments.

Whenever some (but not all) of the parameters in the list (X,A,7,V) are
clear from the context, we may drop these from the list. Thus, if ¥ and A
are clear from the context, then we may refer to Statement(X,A,7,V) as
Statement(7, V), and to its inhabitants as ‘(7, V)-statements’. In the follow-
ing definition of Statement(X, A,7,V) this convention is used.

Assignment: If (X:T) € V, T € DataTypey, and F is a T-expression of type
T, then X:= E is a (T, V)-statement.
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Entry: If (X:T[l,...,I,]) € V, E is a T-expression of type T and for each
i < n one of the following holds:
o E, =x
o I; € BasicTypey, and F; is a T-expression of type I;;

e I; is a PosNumeral and E; is a 7T-expression of type Int;
then X[E,,...,E,]:= E is a (T,V)-statement.

Sending an external telegram: If E is a 7-expression of type Component,
P is a T-expression of type Port, (N:(T1,...,T,)) € ExtTypey, and for
each 1 < i < n we have that E; is a T-expression of type T;, then
E |> P! N(E,...,E,)is a (T,V)-statement.

Internal telegrams: Let (N:(Ty,...,T,)) € A.Behaviour.IntTypes, and for
each 1 < i < n, let E; be a T-expression of type T;. Furthermore, let E
be a T-expression of type Int. Then

o ! N(E,...,E,)is a (T,V)-statement;

e if (X:Timeout) € V, then ># X E ! N(Ey,...,E,) is a (7,V)-
statement;

o if (X:Cycler) € V, then @ X EIN(FE,,...,E,)isa(7,V)-statement.
Starting a timer: If (X:Timer) € V, then start X is a (7, V)-statement.

Stopping a timed process: If (X:T) € V for some T € ClockType, then
stop X is a (7, V)-statement.

Skip: skip is a (7, V)-statement.

Procedure call: If (p:(Th,...,T,)) € A.Behaviour.ProcTypes, and for each
1 < i < n we have that E; is a T-expression of type T}, then p(E, ..., E,)
is a (7, V)-statement.

Control: If E is a T-expression of type Bool and m; and my are (7,V)-
statements, then the following are also (7, V)-statements:

1. if F then m else my;
2. while F do m;
3. {m;m}.

4.11 Static semantical correctness

Definition 4.39 (Static semantics of LSC) Let X be a t-, d-, and a-correct
specification signature and let A € £.LSC. A s Statically Semantically Correct
(SSC) with respect to T if the following conditions hold:
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1. For S in the set A.Behaviour.ExtTelegrams, A.Behaviour.IntTelegrams,
or A.Behaviour.Procedures, we have that S.Body.Statement is a (7,V)-
statement, where

1%
T

A.Vars U Set(S.Pars) U S.Body.Vars
VY U Set(A.Pars)

Il

Note that the variables in S.Pars are not treated as parameters, despite the
name; they are treated as true variables, to which values may be assigned.

2. If § € {A.Initial, A.Panic}, then S.Statement is a (3, A, T, V)-statement,

where
Y = A.VarsU S.Vars

T V U Set(A.Pars)

3. If 51,52 € A.Behaviour.ExtTelegrams and S;.Reaction = S5.Reaction,
then S1 = Ss.

4. Suppose either
51,52 € A.Behaviour.IntTelegrams

or
Si, S5 € A.Behaviour.Procedures.

Then S1.Name = S;.Name implies S, = S5. O
Given a specification signature X, we introduce the following abbreviations:

Boundy = 3.System.Bound
Bindingss;, = X.System.Bindings

]

Definition 4.40 (Static semantics of specification signatures) A speci-
fication signature ¥ is SSC if the following conditions hold:

1. ¥ is t-, d-, and a-correct;

2. every A € X.LSC is SSC with respect to ¥;

3. if Ay, A2 € .LSC and A;.Name = A;.Name then Ay = Ay;
4. if EN(E,..., Ey,) € Bindingsy, then for some A € ¥£.LSC:

e A.Name = N;
o if APars = ((Xy:Th),...,{(XnTy)), then E; is a (Z,0)-expression
of type T;, for 1 < i< n;

5. f EN(Ey,...,E,) and EM(Fy,..., Fy) are in Bindingsy, then N = M
and (El,...,En)Z(Fl,...,Fm). a
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In an SSC specification signature X, for each E € Boundy there is exactly one
A € 3.LSC such that there is a Binding of the form

E A.Name(E,..., E,)
in Bindingsy,. Thus we may define a function.

Definition 4.41 (Iscs) Given an SSC specification signature ¥, we define
o function Isce from Bounds to X.LSC as follows. If E N(Ey,...,E,) €
Binding... then lscs(E) = A, where A is the unique element of ¥.LSC with
A Name = N |

14.12 Substitutions

\\Ve define the notion of substitution. Although it is used in the definition of the
operational semantics, we place it in the part on syntax, because substitution
is a purely syntactic notion, dealing with forms, not meaning.

Substitutions replace variables in expressions by expressions, in a type-
preserving way. The substitution may result in an expression using other vari-
ables than used in the original, so we need two type functions in the definition
of substitution, one for the types of variables in the input and one for the
output.

Consider an SSC specification signature ¥. Let 7 and 7’ be Z-type func-
tions.

Definition 4.42 (Substitution) A (X,7,7')-substitution is a function
p:dom(7) — Expr(%,7”)
such that if (X:T) € T then typey 1 (p(X)) =T. O

Definition 4.43 (Substitution on expressions) Let p be a (X,7,T"')-sub-
stitution. The function

(o] : Expr(%,T) — Expr(Z,T")
is defined as follows ([p] is written postfiz).
o If (X:T) € T and T € DataTypey, then X[p] = p(X).
o If N is a constant, i.e., a member of the set

{true, false, self} UNumeral U Componenty U Ports, U U T.Set
Tex. Types

then N[p] = N.
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e IfE[Ey,...,E,] € Expr(%,T), then

(E[Eo, - -, Eq])lp] = Elpl(Eolp], - - -, Enlp])-
o If O € {+,—,*,mod,div,\,==, <}, then (EOF)[p| = E[p|OF|p].
e If O € {!,active, value}, then (OE)[p] = O(E[p]).

e For convenience, we extend [p| to the Datum *: *[p] = . Let E be the
(3, T)-expression

{(E0,17 csey En+1,1)1 ey (EO,mv ey ETH‘IJR)} : T
Then
Elp| = {(Eoalpl,-- -+ Ent1,110])s - -+ (Bomlpl, - - - Envrmlo])} : T
o

Theorem 4.44 If p is a (X, T,T')-substitution and E is a (X, T)-ezpression,
then typeg, 7(E) = typeg, 1 (E[p]).

Definition 4.45 (Substitution on statements) Let p be a (Z,7,7")-sub-
stitution, A € X.LSC, and let V C T and V' C T'. The function

(o] : Statement(Z, A, 7,V) — Statement(X, A, 77,V')
is defined as follows ([p] is written postfir).

o If 7 is an assignment of the form E:= F, then w[p] = (E[p]:= F[p]).

If m is of the form E|> p ! N(E\,...,E,), then

mlp] = Elp] |> plo] ! N(Ei[pl,- -, En[o])

If m is of the form ! N(E,...,E,), then

w[p] = ! N(E1lp], ..., Enlp])

If 7 is of the form OX E | N(E,,...,E,), where O € {:>#,@Q}, then

wlp] = DO X[p] E[p] ! N(Erlp],- .., Enlp])

If w is of the form O X, where O € {start, stop}, then

wlp] = O X[p]

skip[p] = skip.
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If w is a procedure call of the form p(E,...,E,), then
mlp] = p(Erlp), - - -, Enp])-

If w is of the form if F thenm, elsemy, then

w[p] = if E[p] then m [p] else m2[p)].

If 7 is of the form while E do 7', then

7[p] = while E[p] do 7'[p].

If 7 = {m;ma}, then
(o] = {m[p]; m2[p]}.

5 Operational semantics

We define the operational semantics of a variety of LARIS constructions. First
of all, Section 5.1 gives the semantics of types. These are sets of possible values
for expressions of the type in question. In Section 5.2 one finds the semantics
of these expressions. It does not suffice to interpret components of a system by
values or sets of values. Components are dynamic objects: components process
information, send telegrams, receive them, change values of local variables, in
short, they are active. To fully capture the intended meaning of components,
one therefore needs to capture this idea of change. The operational semantics
of components can be expressed conveniently using process graphs. In such a
setting, the meaning of a component is viewed in terms of a set of states and
the transitions that are possible between these states. Inductive proof rules are
used to define the set of transitions between states, whereby the validity of a
number of transitions may imply the validity of some other transition.

In Section 5.3 one finds the operational semantics of components. Commu-
nication channels are provided with an operational semantics in Section 5.4.
Finally, the operational semantics of a LARIS specification is viewed as the
parallel composition of the operational semantics of its components and its
channels. This is described in Section 5.5.

Throughout this section we assume fixed some SSC X. The semantics of a
specification is the semantics of its signature. We only provide specifications
that are SSC with a meaning.

5.1 Interpretation of types

We associate with any 3-type the set of objects that inhabit this type. This
association is achieved by means of a function [-] whose domain is the set of
3-types. At the same time we define a function default on types that specifies
a default value for every E-type.
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e First the BasicTypes.

— [Bool] = {false, true}.
default(Bool) = false.

— [Int] ={...,—2,—-1,0,1,2,...}, the set of integers.
defauit(Int) = 0.

— [Component] = Component;.
default(Component) = Log.

— [Port] = Porty.
default(Port) = log.

— Let T € ©.Types. Then [T.Type] = T.Set.
Furthermore, default(7T.Type) = T.Default.

e For convenience we extend the function [-] to positive numerals: if NV is

a PosNumeral denoting the natural number n, let [N] = {0,...,n — 1}.
Then we can define [T'[Iy, .. ., I,]] as the set of functions from [p] x . .. x
[I.] to [T7:

[Tllo, ..., L] = [T]Hobx <UD,

default(T'[lo, ..., I5]) is the constant function to default(T). In other
words,
default(T'[Iy, . . ., In])(ag, - - . , an) = default(T")

for every (ag,...,an) € [Io] X ... % [In]-
e Before defining the interpretation of the types for timed processes, it is

useful to define the set of internal telegrams that may occur in the system
specified.

IntTels is defined as:

there exists a A € ¥.LSC with
{{N} <[] <. x [Tl | (N:(T1,...,T)) € A.Behaviour.Int Types }

This set thus contains tuples of the form (N,d,,...,d,), where N is a
possible internal telegram name and dy, ..., d, its data parameters.

[Timer] contains all pairs of the following form:
— (false,0).

This is the value of a timer process that is inactive. It is also the
default value for the type Timer.

— (true,n) for n € N (where N denotes the set of natural numbers).

This is the value of a timer that has been switched on n time units
ago. The value n should rise by one after each time unit has passed.

[Timeout] contains all tuples of the following form:
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— (false,0).
This pair is carried by a passive time-out. It is also the default value
for Timeout.

— (true,n,T), where n € N\ {0} and T € IntTels.

These are the values that an active time-out may take on. After n
more time units the telegram T will be put into the input buffer.
Once this has been done the time-out will be switched off.

[Cycler] contains all tuples of the following form:

— (false,0).
This pair is carried by a passive cyclic time-out. It is also the default
value for Cycler.

— (true,n,m,T), where 0 <n < m and T € IntTely.

true indicates that the process is active. n indicates the number of
time-steps to go before the next telegram will be sent by the process.
m indicates the length of the cycle, so m should be no less than n.

If n reaches below 1, then the telegram T is put into the input buffer,
n is replaced by m, and the cycle is repeated.

5.2 Interpretation of expressions

Definition 5.1 (7-assignment) Let T be a X-type function. A T-assignment
o is a function with domain dom(7) U {self} such that:

o whenever (X:T) € T, we have o(X) € [T];
e o(self) € Bounds.

Given a T-assignment o, we define an extension of that function with the same
name to the set of all T-expressions, such that if E € Expr(7), then

o(E) € [typer(E)]U{T}.

If o(E) =T, this means that the computation of the value of E has failed:
either an index of an array has run out of range, or division by zero has been
attempted.

Variables/parameters: If (X:T') € 7, then o(X) is already defined.

Inhabitants of finite basic types: If b € [T] for some T € BasicTypey, \
{Int}, then o(b) = b.

Numerals: If N is a Numeral and n is the corresponding natural number,
then o(N) = n.
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Self: o(self) was already defined by the definition of T-assignments (see Def-
inition 5.1).

Array-positions: If E[Ey,...,E,] is a T-expression of type T(lo,...,In],

then
{ o(E)(o(Ey),...,0(E,)) if o(E;) € [L] for
o(E[Eg,...,E.]) = i1<n,and o(E) #1;
T otherwise.

Arithmetical operations: Let E and F be T-expressions of type Int.

If o(E) =T oro(F)=1,theno(E+ F)=0(E—-F) =0(ExF) =
o(E mod F)=0c(E div F)=1.

If both o(E) and o(F) are integers, then:

o(E+ F) = o(E)+o(F)

o(E—-F) = o(E)—o(F)

o(E x F) = o(E-F)

( the unique 0 < n < o(F) ifo(E)>0
such that foranm € N and o(F) # 0;
m-o(F)+n=o(E)

o(E mod F) = <{ the unique o(F)<n<0 ifo(E)<0
such that foranm €N  and o(F) # 0;
m-o(F)+n=o0(E)

W if o(F) = 0.

( the unique n >0 if o(F) > 0 and
such that o(F) >0, or
n-o(F)<og(E)< o(E) < 0 and
(n+1)-o(F) o(F) <0

o(E div F) = ({ theuniquen <0 if 6(E) > 0 and
such that o(F) <0,or
(n+1)-0(F)<o(E) < o(E)<0and
n-o(F) o(F) >0

1 if o(F) = 0.

Boolean operations: Let F and F be T-expressions of type Bool.

If 1€ {o(E),o(F)}, then o(E A F) = 1. Likewise, if 0(E) =T, then
o(~ E) =1.
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Otherwise, if o(E),o(F) € {true,false}, then:

true if o(E) = o(F) = true;
o(EAF) { false otherwise.
false if o(E) = true;
a(~ E) { true if o(E) = false.
Equality:
1 if o(E) =1 or o(F) =T
O'(E —_== F): true lfU(E)=0'(F) andU(E)7éT1
false otherwise.
Less-than:

I ifo(B)=Toro(F) =T;
o(E < F)= { true if o(E) < o(F);

false otherwise.

Active: o(activeX) = po(a(X)), where for any nonempty tuple (ao, ..., a.),
the projection mapping py produces the first element in the tuple: ao.

Value: o(value X) = p;(o(X)), where for any tuple (ao,...,a,) withn > 1,
the projection mapping p; produces the second element in the tuple: a;.

Arrays: o is defined by induction on arrays by induction on their length.

e o({}:T) = default(T).
e Let T = Blly,...,I], and let E be the T-expression

{(D()" . '1DTL,Dn+l)1E11~ . ~aEm} :T

and let f be o({E1,...,En}:T).

If f =1 or for some 7 < n+ 1 such that D; # « it is the case that
o(D;) =1, then o(E) =1.

If for some i < n such that I; is a PosNumeral and D; # = it is
the case that o(D;) & [I;], then o(E) = 1. This case deals with
assignments to indices that are out of range.

Otherwise, if none of the above hold, the function o(E) : [Ip] x
...[In] — [B] is defined as follows:

0(Dpi1) if for each ¢ < n with
o(E)(ag,-..,an) = D; # * we have a; = o(D;);
flag,...,an) otherwise.
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5.3 Operational semantics of a component

Up to now, we have given meaning to the static parts of a LARIS specification:
its types and expressions. The components of a specification require a more
dynamic semantics, a semantics where the notion of change is made explicit. We
choose to model components, communication channels, and indeed complete
systems by means of process graphs, which are defined below.

Definition 5.2 (Process graph) A process graph is a tuple
M=(S,5A,R)
where:

o S is a nonempty set; the elements of this set are referred to as the states

of M;
e s € S is the initial state of M;
e A is the set of actions of M;

e R C Sx A xS is the set of transitions of M; if M is clear from the
context, we sometimes write s, — sz instead of (s1,a,82) € R. O

We associate components of ¥ with a process graph semantics. Thus, given a
Binding
C N(P,...,FP)

in X.System.Bindings, we define a process graph M, the operational semantics
of the component with name C. To define M¢, we must provide all ingredients
required for a process graph: its set of states, its initial state, its set of actions,
and its transitions. These notions are introduced in the following sections.
Throughout these sections, we fix the following notations.

e Let A be the LSC associated with the Name N. Thus, A = Iscx(C).
e Let A.Pars = ({(X1:T1), ..., {Xk:Tk))-

e Let £ be the (-assignment (which must be defined on self, by Defini-
tion 5.1) with £(self) = C. As Py,..., P, do not contain variables, ¢ is
defined on these expressions.

Next, we define the {(X1:T1),..., (Xi:Tk)}-assignment oy:

o0(X:) §P)  if1<i<k
oo(self) = C
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5.3.1 Sets of telegrams

We first define a few useful sets of telegrams.

e ExtTels; is the set of external telegrams that may appear in the system,

not just those that may arrive at, or be sent by, a component specified
by A. It is defined as:

2 (N:(Th,...,T)) € ExtTypey, and
{(N,d)lEITI,...,Tn<(J‘)eiTl]lx”.x[[Tn]] = )}

e ExtTely is the set of telegrams that components specified with A may

receive, together with the ports on which these may be received:

—

7 (N,d) € ExtTely and
{(p (N, d)) | (p, N) € A.Behaviour.Reactions

o IntTely, the set of internal telegrams of A, is defined as follows:

= (N:(Th,...,T,)) € A.Behaviour.IntTypes
{(N’d) | BT""”T"( A €] ... x [To]

e Finally, we define the set Telp of telegrams that components specified

with A may receive in their input buffer, consisting of the two previously
defined sets, with a tag ‘internal’ attached to internal telegrams:

{(internal, T) | T € IntTelp} U ExtTels

5.3.2 States of M¢

A state of Mc is a quintuple (7, V, 7, o, B), where:

1.
2.

T is a B-type function such that Set(A.Pars) U A.Vars C T;
AVars CV C T \ Set(A.Pars);
7 is either a (7, V)-Statement (thus V is the set of variables of 7 to which

assignments may be made), or the symbol +/;

the presence of a Statement 7 in a state indicates that the actions dic-
tated by = should be carried out before another telegram is processed,
while the symbol / indicates that the component is ready to process a
next telegram;

o is a T-assignment that agrees with oy on dom(Set(A.Pars) U {self});

. B is a queue containing elements of Tel,; we use list notation for queues:

[] denotes the empty queue and - denotes concatenation of queues.
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5.3.3 Initial state of M
The initial state of Mc¢ is s, = (T,,V,,7,,0,,[]), where:

1.

- W

V, = A.Vars U A.Initial. Vars;

7, = Set(A.Pars) U V,;

m, = A.Initial.Statement;

o, is the following 7,-assignment:

(a) o, agrees with og on dom(Set(A.Pars) U self});
(b) if (X:T) € A.VarsU A.Initial.Vars, then o,(X) = default(T).

5.3.4 Actions of M,

Definition 5.3 (Actc) Acte is the set containing as elements:

assign(X, a), where (X:T) € A.Vars for some T € DataTypey and a €
[T];

entry(X, (a1,...,an,a)), where (X:T[ly, ..., I,]) € A.Vars for some array
type T(Iy, . .., I,], and for every i < n we have a; € [I;JU{*} and a € [T];

send(E,p,T'), where E € Componenty\ {C}, p € Portg, and T € ExtTels;
receive(p, T'), where (p,T) € ExtTely;

in(T"), where T € IntTelp;

out(p,T), where (p,T) € ExtTely;

out(T), where T € IntTely;

timer(X), where (X:Timer) € A.Vars;

timeout(X,n,T), where (X:Timeout) € A.Vars, n € N\ {0}, and T €
IintTely ;

cycler(X,n,T), where (X:Cycler) € A.Vars, n € N\{0}, and T € IntTels;
stop(X), where (X:T') € A.Vars for some T € ClockType;

panic. O

Now, the actions of M¢ are ActcU{t, 7}. Here the special action T denotes the
silent action, invisible from outside the component (see [11] for a discussion on
silent actions and [12] for a treatment of equivalences on process graphs with
such actions). t denotes a time-step action: the result of this action is that
timed processes are updated.
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5.3.5 Transitions of M¢

The transitions of M¢ are defined, not directly, but by means of a Transition
System Specification [20]. In the following definitions (up to Definition 5.7), we
assume fixed a signature ¥ and a set A of actions.

Definition 5.4 (Transition rule) A transition rule is of the form

a a
t, B¢ t, 3t
a
t>t
where t,t't1,...,tn, t},...,t, are expressions and a,ai,...,a, are actions. O

Definition 5.5 (TSS) A Transition System Specification (or TSS) is a set of
transition rules.

Definition 5.6 (Proof) A proof from a TSS R of a transition rule

a
i B4

t; St tn "

t—t

consists of an upwardly branching tree in which all upward paths are finite,
where the nodes of the tree carry labels of the form u LA u', such that:

e the root has label t % t';

e if some node has label u LAY , and K 1is the set of labels of nodes directly
above this node, then

1. either K =0 andu > o' equals t; 25 t, for a certain i € {1,...,n},
K
b

u—u’

2. or s a substitution instance of a transition rule in R.

Definition 5.7 (Process graph determined by TSS) For a TSS R, we
define M(R) to be the process graph (S, s, A, R), where

R={(s1,a,52) € Sx Ax S| —5— is provable from R}.

81 — 82

O

Up to now we have defined the states, the initial state, and the sets of actions
of M¢. The above tells us that all that remains is to define a TSS: this yields
the induced process graph.

Before defining the required TSS, we introduce an auxiliary notation, which
helps to express that transitions involve updating a function.
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Definition 5.8 (Updating a function) Let f : A — B, let ay,...,a, be
distinct elements of B and let by,...,b, be (not necessarily distinct) elements
of B. Then flay:= b1,...,an:= by]: A — B is defined as follows:

b; ifl1<i<nanda=a;

flay:= by, an:= bal(a) = { fla) otherwise.

O

We are ready to define the TSS R. It contains precisely the following transition
rules.

Assignment to variables: In the semantics we make a distinction between
assignments to LSC variables and assignments to variables local to a pro-
cedure definition or message handling. The first are externally visible,
while the second are invisible to the outside world, so that these corre-
spond to T-steps.

Suppose
e (T,V,X:= E, o, B) is a state (that is, a state of M¢);
e (X:T) € A.Vars; and
e o(E) #1.

Then

assign(;Y;ﬂ(E))

(T,V,X:= E,o,B) (T,V,/,0[X:= o(E)],B)

is a transition rule in R.

Suppose
e (T,V,X:= E, o,B) is a state;
e (X:T) € V\ (A.Vars); and
o g(E) #1.

Then

(T,V,X:= E,0,B) 5 (T,V,+/,0[X:= o(E)], B)

is a transition rule in R.

Assignment to array-positions: The same distinction between assignments
to LSC variables and other variables is made here.

Suppose

o (T,V,X|[Ey,...,E,):= E,o,B) is a state;
o (X:T[l,...,I,]) € A.Vars;
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e for each i < n such that E; # *, we have o(E;) € [I];

* a(E) #1;

e o' is the T-assignment that differs from o only in its assignment to

X:
o(E) if for all i < n with
’ - E; # % we have
o' (X)(ao,---,an) = 0 = o (E,);

o(X)(ag,...,an) otherwise;

e for each i < n:
po— ¥ if B; = #;
* 7| o(E;) otherwise
Then
(T, V, X[Eo, ..., En)i= E,a,B) "Gy bnd®N oy o B)

is a transition rule in R.
Suppose
e (T,V,X|Ey,...,E,):= E,o,B) is a state;
o (X:Tly,...,I,])) € V\ (A.Vars);
e for each i < n with E; # *, we have o(E;) € [L];
e o(E) #1; and

e ¢’ is the T-assignment that differs from o only in its assignment to

X:
o(E) if for all ¢ < n with
E; # + we have
o' (X)(ao,...,a,) = o ja(Ei);
o(X)(ag,...,a,) otherwise.

Then

(T,V,X|Eq,...,E,):= E,0,B) > (T,V,/,0',B)
is a transition rule in R.
Sending an external telegram: Suppose

e 7 is the Statement E |> P! N(Ey,...,E,);
o (T,V,n,0,B) is a state;
e o(E) ¢{C,T};
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e o(P)#1; and
o T =(N,o(Ey),...,0(En)) € ExtTelg.

Then

(T,V,m,o0, B) send(a(El,)a(P),T)

is a transition rule in R.

(T, V,V/,0,B)

Sending an internal telegram: Suppose

e 7 is the Statement ! N(E,...,E,);
e (7,V,m,0,B) is a state; and
o T'=(N,0(Ey),...,0(En)) € IntTel,.

Then

(T,V,1,0,B) "3 (T,V,+/,0, B - [(internal, T)])

is a transition rule in R.
Starting a time-out: Suppose

e 7 is the Statement »># X E | N(Ey,...,E,);
e (7,V, 7, 0,B) is a state;

e o(E) e N\ {0}; and

e T'=(N,o(E1),...,0(E,)) € IntTel,.

Then

timeout(X,o(E),T)
-3

(T,V,m,0,B) (T,V,V/,0[X:= (true,o(E),T)], B)

is a transition rule in R.
Starting a cyclic time-out: Suppose

e 7 is the Statement @ X E ! N(E,,...,E,);
o (T,V, 7, 0,B) is a state;

o(E) € N\ {0}; and

T =(N,0(Ey),...,0(E,)) € IntTely.

Then

cycler(X,o0(E),T)
3

(T,V,n,0,B) (7,V,V,0(X:= (true,o(E),0(E),T)|, B)

is a transition rule in R.
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Starting a timer: If (7,V,start X, o, B) is a state, then

(T,V,start X,0,B) timer(X) (T,V,/,0[X:= (true,0)],B)

is a transition rule in R.

Stopping a timed process: If (T,V,stop X, 0, B) is a state, then

stop(X)

(T,V,stop X,0,B) = ' (T,V,/,0[X:= (false,0)], B)
is a transition rule in R.

Skip: If (7,V, skip, 0, B) is a state, then

(7,V,skip, 0, B) 5(T,V,v,0,B)
is a transition rule in R.

Procedure call: Suppose Pr € A.Behaviour.Procedures with

Pr.Name = p
Pr.Pars = ((Y1:U1),-..,(Ya:Uyn))
Pr.Body.Vars (Z3: V1), -y (Zm:Vm)}

I
N -

Pr.Body.Statement

Now, suppose

(7,V,p(E}, ..., Ey),0,B) and s are states;
a is an action (in M¢ of course);
e for all 1 <i < n we have o(E;) # T;

e Ni,...,N, and Mi,..., M, are distinct, 3-available Names outside
dom(T);

o V' =VU{(Ni:lh),..., (NpUn), (M1:V1), ..., (Mm:Vin) }

o T'=TUV,

e ¢’ is the extension of o to the domain
dom(T) U {N], e ,Nn,l\/fl, .o ,Mm}
such that:

o'(N:) o(E;) for 1 <i<n;
o'(M;) = default(V;) for 1 <j<m;
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e and pis the (X, Set(A.Pars) UA.VarsUSet( Pr.Pars)U Pr.Body.Vars, :
T')- substitution defined thus:

N; if X =Y, forsomel<i<mn;
p(X)=¢ M; ifX =2 forsomel<j<m;
X  otherwise.

Then
(T, V', 7lpl,6’,B) > s
(T,V,p(Er,...,En),0,B) 5 s

is a transition rule in R.

If-then-else: Suppose

o (T,V,if E then Tyrye else Traise,d, B) is a state; and
e 0(E) € {true, false}.

Then

(T,V,if E then Typye else Trarse,0,B) = (T,V, To(E)s 0y B)
is a transition rule in R.
‘While-do: Suppose

o (T,V,vwhile E do w0, B) is a state; and
o o(E) = true.

Then

(T,V,while E do m,0,B) 5 (T,V,n; while E do 7,0, B)
is a transition rule in R.
Suppose
e (7,V,while E do w,0,B) is a state; and
e o(E) = false.

Then

(T,V,uhile E do m,0,B) = (T,V,+/,0,B)
is a transition rule in R.
Sequential composition: Suppose
e (T,V,m;n",0,B) and (T, V',n’,0’, B') are states;
o 7' #/; and
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e ¢ is an action.

Then
(T,V,n,0,B) % (T'\V.,n',0’,B')

(T,V,n;nt},0,B) > (T V,n';n",0',B')

is a transition rule in R.

Suppose
e (T,V,m;n’,0,B) and (T",V',/,0', B') are states; and
e ¢ is an action.

Then
(T,V,m,0,B) % (T',V',/,d',B’)

(T,V,m7',0,B) 5 (T',V',n',0’,B')

is a transition rule in R.

Receiving an external telegram: Suppose

e (T,V,m, o,B) is a state; and
o (p,T) € ExtTely.

Then

receive(p,T')
—

(T7 v7 7r7 a-’ B)

is a transition rule in R.

(T7 V,n, o0, B- [(P, T)])

Starting a flow corresponding to an external telegram: Suppose

o (p,T) € ExtTela;

e T=(N,a1,...,a,);
(T,V,v/,0,[(p,T)] - B) is a state;

e M e € A.Behaviour.ExtTelegrams, and

Me.Reaction.Pars = (p,N)

Me.Pars = ((Y1:U1),...,(YaUn))
Me.Body.Vars = {{(Z;:V1)y. .- (Zm:Vin)}
Me.Body.Statement =

e V' = A.VarsU Set(Me.Pars) U Me.Body.Vars;
e 7' =V’ USet(A.Pars);
e o' is the T'-assignment defined as follows:
a(X) if (X:T) € Set(A.Pars) U A.Vars;

d(X)=1¢ a if X =Y, (1<i<n);
default(V;) if X =2Z; (1 <j<m).
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Then

(T, V,v,0,[(p, T)] - B) "B (1", V', 7,6", B)
is a transition rule in R.
Starting a flow corresponding to an internal telegram: Suppose
o T'=(N,a1,...,a,) € IntTely;
e (7,V,4/,0,[(internal,T)] - B) is a state;
e Mi € A.Behaviour.IntTelegrams, and

M<i.Name.Pars = N

Mi.Pars = ((Y1:U1),...,{Yn:Uyn))
Mi.Body.Vars = {Z1:V1),- s (Zm:Vin)}
Mi.Body.Statement = m;

e V' = A.Vars U Set(Mi.Pars) U Mi.Body.Vars;
e T' = V' U Set(A.Pars);

e ¢’ is the T'-assignment defined as follows:

o(X) if (X:T) € Set(A.Pars) U A.Vars;
d(X)={ a fX=Y,(1<i<n)
default(V;) if X =2Z; (1<j<m).

Then

out(T)
—

(7,V,+/,0,[(internal, T")] - B)

is a transition rule in R.

(T,7 v’? 7r, UI’ B)

Panic: Suppose
e (T,V,7,0,B) is a state;
e V' = A.Vars U A.Panic.Vars;
e 7' = V' USet(A.Pars); and
e ¢’ is the 7'-assignment defined as follows:

'(X) = o(X) if (X:T) € Set(A.Pars) U A.Vars;
o "~ | default(T;) if (X:T) € A.Panic.Vars.

Then

panic

(T,V,n,0,B) ™= (T',V', A.Panic.Statement, ¢, [])

is a transition rule in R.
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Time: Suppose

e (7,V,m,0,B) is a state;

e ¢’ is the T-assignment defined as follows:

[ (true,n+1) if (X:Timer) € V and
o(X) = (true,n);

(true,n —1,T) if (X:Timeout) € V,
o(X) = (true,n,T),
and n > 2;

(false,0) if (X:Timeout) € V, and
for some T € IntTelp we have
o' (X) = 4 o(X) = (true,1,T);

(true,n—1,m,T) if (X:Cycler) € V,
o(X) = (true,n,m,T),
and n > 2;

(true,m,m,T) if (X:Cycler) € V and
o(X) = (true,1,m, T);

o(X) otherwise;

{(X,T) | (X:Timeout) € ¥ and o(X) = (true,1,T)}
Send= U
{(X,T) | (X:Cycler) € V and o(X) = (true,1,m,T); }

e (X1,T1),...,(Xn,Ty,) is an enumeration of Send (and thus not con-
taining any doubles);

e @ = [(internal, T1), ..., (internal, T;,)].
Then

(T,V,7,0,B) 5 (T,V,m,06',B-Q)

is a transition rule in R.

5.4 Operational semantics of a communication channel

We define another process graph: Channel, the operational semantics of a com-
munication channel.

States: The states of Channel consists of all queues containing elements (p, T'),
where p € Porty, and T € ExtTely.
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Initial state: The initial state of Channel is the empty queue [].

Actions: We define the set of transitions of Channel. First define ChAct as the
set containing all elements that are of one of the following forins:

1. read(p,T), where p € Porty, and T € ExtTely:
2. transmit(p,T'), where p € Porty, and T € ExtTels:.

Then the set of actions of Channel is ChAct U {t}. Thus. there are no
silent actions in a communication channel.

Transitions: The transitions that exist in Channel are the following.

Receiving a telegram: If B is a state of Channel, p € Porty:. and T =
d(p. . e
ExtTely, then B D g [(p,T)] is a transition in Channel.
Transmitting a telegram: If B is a state of Channel, p € Porty.. and

it(p,T' . . .
T € ExtTely, then [(p,T)|-B st ) B is a transition in Channel.

Time: If B is a state of Channel, then B %, Bis a transition in Channel.

5.5 Operational semantics of a specification

‘We give an operational semantics for the SSC specification signature 3, using
the operational semantics already given for components and communication
channels.

Definition 5.9 (X-action) The set of X-actions is defined as:
{Acte x {C} | C € Bounds }
U
{ChAct x {(C,D)} | C, D € Bounds;, C # D}
)
inchannel({p, T}, (C, D)) | p € Porty,T € ExtTely,
C,D € Boundg,C # D
Acts = U
outchannel((p,T), (C,D)) | (p,T) € ExtTely,(p),
C,D € Boundy,C # D

U
{unexpected(C') | C' € Bounds:}

U
{t,7}.



Operational semantics 85

Definition 5.10 (T¢) If Mc = (S, s,ActcU{t, 7}, R), then T¢ is the process
graph (S, s,Acts, R'), where

{(sla (a’7 C))32) I ac ACtC and (Slaa7 32) € R}

R = U
{(s1,a,82) | a € {t, 7} and (s1,qa,s2) € R}.

O

Definition 5.11 (C (¢ p)) Suppose C,D € Bounds and C # D. Letl =
(C, D) and Channel = (S, s,ChAct U {t}, R). Then C; = (S, s, Actg, R'), where

/ {(s1,(a,l),s2) | a € ChAct and (s1,a,sz2) € R}
R = U
{(Sl7t7 32) | (Slyty 32) € R}

O

Definition 5.12 (Communication function:) We assume a partially de-
fined communication function v : Actg x Actg — Acts. ~(a,b) is defined
and equal to ¢ if and only if one of the following holds:
e {a,b} = {(send(D,p,T),C), (read(p, T), (C, D))} and
¢ = inchannel((p, T}, (C, D))
where C, D € Bounds,, C # D, p € Portg, and T € ExtTels.

send is an action of a component and read of a channel. Their commu-
nication results in placing a telegram in the input buffer of the channel.

o {a,b} = {(receive(p,T), D), (transmit(p, T'), (C, D))} and
¢ = outchannel({(p, T), (C, D))
where C, D € Bounds, C # D, and (p,T) € ExtTeli.(p)-
transmit is an action of a channel and receive that of a component. When
they communicate in the above manner, a telegram is moved from the
channel to the input buffer of the component.
e {a,b} = {(transmit(p, T'), (C, D)), (panic, D)} and
¢ = unexpected(D)
where C, D € Bounds, C # D, and (p,T) € ExtTels \ ExtTelsc,.(p)-
This models the receipt of a telegram that cannot be processed by D, for

it has no appropriate response to it.

O

The above definition ensures that v is commutative, meaning that y(a,b) is
isomorphic to v(b, a) for all a,b € Acts. It also ensures that v is associative,
as both y(a,y(b, ¢)) and v((a,b), c} are always undefined.
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Definition 5.13 (Parallel composition) Suppose t € A, and for each i €
{1,2} let M; = (Si,s:, A, R;) be a process graph. Let v: Ax A — A be a
partially defined commutative and associative communication function. The
parallel composition of M; and My is

M;i || Mz = (S1 x Sa,(s1,52), A, R)

where R s

{((tl)u)aa’ (t21u)) | ac A\ {t}’ (tl)a7t2) € Rlvu € 52}
U
{((taul)’av (t,'LLg)) l ac A\{t}1t € Sla (uh a7u2) € R2}

U
{((t17u1)7 ’Y(a’ b)a (t2,u2)) l 7(0'1 b) deﬁned1 (tl’av t2) € Rl’ (ul’b, u2) € R2}
U

{((tla ul)atv (t2,U2)) | (t17t1t2) S Rla(ulvt:u2) € R2}

O

|| is a commutative and associative operation. That is, if M, M2, and M3
are process graphs over the set of actions A, and +y is a partially defined com-
mutative and associative communication function on A, then

My || M2 is isomorphic to My || My;
(My || M2) || M3 is isomorphic to My || (M2 || Ma).

Due to associativity, the notation My || ... || M, is unambiguous. If n = 0,
this denotes simply My; otherwise an arbitrary bracketing gives us its meaning,
using Definition 5.13.

Enumerate Bounds as Cy, ...,Cy and {(C, D) | C, D € Bounds,C # D} as
li,...,l;m. Then we may define the following.

Definition 5.14 (Myx) My is the process graph
Tey |-+ I Te, | Coy Il --- I G-

0

Definition 5.15 (Encapsulation) Let M = (S,s, A, R) be a process graph
and let H C A. The encapsulation operator 8y is defined on M as

d(M) = (S,5,4, RN (S x H x S))

Finally, we are ready to give our intended semantics for X.

Definition 5.16 (Tx) Let H contain all X-actions of the following forms:
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e (send(D,p,T),C), where C,D € Bounds;,, C # D, p € Ports, and T €

ExtTely;
e (read(p,T),(C, D)), where C,D € Bounds, C # D, p € Ports, and T €
ExtTels;
e (transmit(p, T), (C, D)), where C,D € Bounds, C # D, p € Porty, and
T € ExtTely.
Then Ty = (')H(ME). a

Note that the above does not encapsulate the receive actions. This is because
it is not assumed that we are in a closed system. Any component in our system
may receive telegrams from the environment, be it the logistic or infrastructure
level, or components of the interlocking outside the specification. In specific
cases we may wish to encapsulate some receive actions, if knowledge about
the information flow tells us that particular telegrams may only arrive from
components within the specification.

6 Example: part of Driebergen

We work out a concrete exemplifying LARIS specification. The example is
a translation into LARIS of the specification in EURIS of the railway yard at
Driebergen. We specify only a relatively small part of it, concerning three tracks
surrounded by six approach monitors which report to a warning device. The
specifications for the tracks, approach monitors, and warning device are taken
from UniSpec [16]. The approach monitor and warning device specifications
are from UniSpec version September 13, 1997, and the track specification from
UniSpec version September 30, 1997. In the translation we have ignored the
simulation pages, although a complete specification should not ignore these.
The present example, though, is only meant as a demonstration of what a
UniSpec specification looks like when it is translated into LARIS. Just before
each LSC specification we have placed their UniSpec originals.

ool bbb o ToToToToTolo o o oo toto o Too oo o o o o o oo toToTo T o oo o o o o oo o o Fa o oo o o o oo o o

A %
% LARIS-specification of a part of Driebergen %
% %
% Contents: %
% 1. Type definition %
% 2. Approach Monitor LSC %
% 3. Warning Device LSC %
% 4. Track LSC %
% 5. System layout %
% %

I T T b b ToTo T Toto oo T to ot ToTota oo oo Tt o to o Fo o o o ot T T o o o T T o o o T T o e o T T
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WIRRIABIAIIAIDAALAAR% 1. TYPE DEFINITION(S) AAUUANLAAIAAAAIAANS
h

% The use of enumerated types is heavily encouraged. Their use

% makes much clearer the actual range of values than using

% large types such as Int.

)

% We have two enumerated types, for which in EURIS the type Int
% is used: AMS (Approach Monitoring Status) and Route (for Route
% Type) .

AMS

{occupied, complete_unoccupied,
incomplete_unoccupied}

Route = {drive_on_sight, normal, automatic_normal,
drive_on_sight_normal}
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h
%
%
h
%
%
%
%
%
)
%
%
%
A
%
%
)
%
%
)
%
YA
%
YA
A
A
%
%
h
yA
%

h

Kh bbbttt %% EXTERNAL TELEGRAM TYPES %A% bbb bbbt hhhithheth

We list here the types of external telegrams used throughout

the system, together with mnemonic names for their
positions, as used in the EURIS-specification.
The fields are extracted from the EURIS-specifications for

approach monitors, warning-devices and tracks. It is likely
that more fields must be added when other LSCs are studied.

This would imply that the current specification would also
have to be altered.

A01: Q) BO1:(T0:Bool) CO1:() DO1: (AR:Bool)
A02: O B02: () C02: (RL:Int) DO2: (AR:Bool)
A03: () B03: () C03:(RL:Int) DO3: ()

A04: (RT:Route) B04:( co4: )

A05: ) C05: ()

A06: (RN,RL:Int) C06: ()

AQ7:(VP,VT:Int)

EO1: (WN:Component; RW,CD:Int) FO1:(TS,DL:Bool)
E02: (WN:Component; AM:AMS; RW,CD:Int)
E03: ()

EO4: (TS:Bool)

100: Q)
I01:(TS:Bool) J01:()
102: ) Jo2: )
I103: ()

TO1: (E:Component; AM:AMS; WT:Bool; CD:Int)
T02: (E:Component; TS:Bool)

(TS:Track Section status, false = occupied,

true = unoccupied)

Uo1: ()
W02 (E:Component; VA:Int)
WO3(E:Component; VA:Int)
W05: (E:Component; WD:Bool)

(WD:Warning Device control, false = warning,

true = no warning)

X04(TS:Bool)

PO1: (E:Component)
(Not present in the EURIS specification, but used for
reporting panic to the logistic level. )

/A

h

Tt el h b o To Tt Tolo T o oo o oo 1o T To o Yoo o o o oo 26 o T T T T o o o o o o e T o T T o
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AL LI ALLLL AL AhSL%h 2. APPROACH MONITOR LSC UAhUAUARAAAAAAADL D%

LSC
apprmonitor % Name of the LSC

% Parameters of the LSC, and their types:

(Ea, % Name of the component connected to the a-port;

Eb, % Name of the component connected to the b—port;

C:Component; % Name of the warning device to which the current
% component reports;

Pa, % Name of the port of Ea that is connected to
% port a of the current component.

Pb:Port; % Name of the port of Eb that is connected to
% port b of the current component.

PAM, % Passive Approach Monitor

LCS, % Level Crossing Section

VTS:Bool; % Virtual Track Section

SCD:Int[Int]) % Signal Clearance Delay: has a value for each
% route-number.

% Note that the parameter WNR (Warning device NumbeR) has
% disappeared. As we have the type ‘Component’ we need not
% use a number here, but may actually use the name of the
% waring device in question, here: C.

% C also functions as the ‘central list’ of the approach-monitor.
% It is not a list, but in this particular use of central

% telegrams no list is needed. All we need is the name of the

% warning device. Central telegrams to this warning device

% (TO1 and T02) carry their own names. This name is used

% to update the correct version of multivars in the warning

% device and may also be used to return the telegram UO1.

% The use of a list of components would clearly be ‘overkill’

% in this instance.

vars % Beginning of the LSC variable declaration.

AMA, % Approach Monitoring Active

SCP, % Signal Clearance Permission

API, % APproach Indicator

SITa, % Indicator for track Section Transmission at side a
SITal, % Oneshot-variable for SITa

SITb, % Indicator for track Section Transmission at side b



96 LARIS 1.0

SITb1, % Oneshot-variable for SITb
TSUa, % Track Section Unoccupied at side a
TSUDb, % Track Section Unoccupied at side b

S0I:Bool; % Track Section Occupation Indicator
RNR:Int; % Route NumbeR
APM:Cycler % Approach Monitoring telegram initiator

Next we must define the behaviour of the system at startup.
This behaviour is achieved by means of the INI-telegrams

in the EURIS-specification (toggles always fire at startup).
This is simulated in LARIS by sending the INI-telegram

(with no data, indicated by ‘()’) in the ‘initial’ statement.
There is only a single INI-telegram in our specification: the
two INI-flows of the EURIS-specification have been concatenated
in the flow corresponding to INI in our specification.

This means that a cetain order on these flows has been chosen.

A certain order on the INI-telegrams has been chosen, where
this order was not present in the original.

initial ! INIQ)

h
A
%
A
%
YA

The next route setting telegrams are simply passed from one
port to the next.

We comment on the first one: the others have an analogous
meaning. If an AOl-telegram is received on the a-port,

send it to the component Eb, on port Pb of that component
(i.e., send it along port b).

mes a? A01() = Eb |> Pb ! A01()
mes b? A01() = Ea |> Pa ! 401()
mes a? A02() = Eb |> Pb ! 402()
mes b? A02() = Ea [> Pa ! A02()
mes a? A03() = Eb [> Pb ! A03()
mes b? A03() = Ea |> Pa ! A03()

mes a? AO4(RT:Route) = Eb |> Pb ! A04(RT)
mes b? AO4(RT:Route) = Ea |> Pa ! A04(RT)
mes a? A0O5() = Eb |> Pb ! A05()

mes b? A05()

A
h
h
)

Ea |> Pa ! A05()

The route locking telegram AO6 is passed on from the a-port to
the b-port. The telegram must carry an integer value RN,
representing the Route Number and an integer RL, representing
the Route Length.
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% Among other things, below a cyclic telegram APM is activated
% with cycle one. The name APM is overloaded here. It serves

% both as a variable of type Cycler, and as the name of the

% internal telegram.

mes a? AO6(RN,RL:Int) =
RNR:= RN;
AMA:= true;
@ APM 1 ! APMQ);
Eb |> Pb ! AO6(RN,RL)

% If the AO6-telegram is received on the b-port, it is simply
% passed on.

mes b? AO6(RN:Bool; RL:Int) = Ea |> Pa ! AO6(RN,RL)

% AO7 (route monitoring) carries two values: VP (Passing speed)
% and VT (Target speed), both of them integers.
% AO7 is carried along to the opposite port.

mes a? AO7(VP,VT:Int) = Eb |> Pb ! AO7(VP,VT)

% However, when received on the b-port it is checked whether we
% have Signal Clearance Permission. If not, then VP and VT are
% set accordingly, before being passed along.

mes b? AO7(VP,VT:Int) =
if ~SCP then {VP:= 0; VT:= 0};
Ea |> Pa ! AO7(VP,VT)

Eb |> Pb ! BO1(TO)
Ea |> Pa ! BO1(TO)

mes a? B01(T0:Bool)
mes b? B01(T0:Bool)

mes a? B0O2() = Eb |> Pb ! B02()
mes b? B02() = Ea |> Pa ! B02()
mes a? B0O3() = Eb |> Pb ! B03()
mes b? B03() = Ea |> Pa ! B03()

mes a? B04() = AMA:= false; Eb [> Pb ! B03()
mes b? B04() = Ea |> Pa ! B04()
mes a? C01() = Eb |> Pb ! C01()
mes b? C01() = Ea |> Pa ! C01(0)
mes a? CO2(RL:Int) =
AMA:= false; SCP:= false; Eb |> Pb ! CO2(RL)
mes b? CO2(RL:Int) = Ea |> Pa ! CO2(RL)
mes a? CO3(RL:Int) = Eb |> Pb ! CO3(RL)
mes b? CO3(RL:Int) = Ea |> Pa ! CO3(RL)
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mes a? C04() = Eb |> Pb ! C04()
mes b? C04() = Ea |> Pa ! C04()
mes a? C05() = Eb |[> Pb ! C05()
mes b? CO5() = Ea |> Pa ! C05()
mes a? C06() = Eb |> Pb ! C06()
mes b? CO6() = Ea |> Pa ! C06()

mes a? DO1(AR:Bool) = Eb |[> Pb ! DO1(AR)

mes b? DO1(AR:Bool) = Ea |> Pa ! DO1(AR)

mes a? DO2(AR:Bool) Eb |> Pb ! DO2(AR)

mes b? DO2(AR:Bool) Ea |> Pa ! DO2(AR)

mes a? D03() = Eb |> Pb ! D03()

mes b? D03() = SCP:= false; AMA:= false; Ea |> Pa ! D03()

% WN stands for Warning Device Number. Since we have a type for
% components, EO1 may carry the name of a warning device,
% instead of a number.

mes a? E01(WN:Component; RW,CD:Int)
mes b? E01(WN:Component; RW,CD:Int)

Eb |> Pb ! EO1(WN,RW,CD)
Ea |> Pa ! EO1(WN,RW,CD)

% In the following we see a case~in statement, with the mandatory
% ‘otherwise’ clause. This clause is redundant, as AM can have
% only the listed values, due to its type.

mes a? EO02(WN:Component; AM:AMS; RW,CD:Int) =
if WN ==
then case AM in
{occupied : Occupied(RW,CD)

complete_unoccupied : Complete(RW,CD)
incomplete_unoccupied: Incomplete (RW,CD)
otherwise : stallQ}

else Eb [> Pb ! E02(WN,AM,RW,CD)

% For each case above, we have defined a procedure. These are
% listed below.

% The main if-then-else clause of the ‘Occupied’ procedure

% tests the value of CD: if it is below zero, the process is

% stalled by means of the procedure ‘stall’, defined elsewhere.
% Ideally, it should be verified that SCD[RW] never has a

% negative value.

% The penultimate line of the following statement sends
% a central telegram. This is treated as all other
% telegrams. The component it is sent to is C, and the port
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% on which it arrives is ‘right’.

% The telegram TO1 carries the datum ‘self’. This denotes the
% name of the current component.

proc Occupied(RW,CD:Int) =
CD:= SCD[RW];
if CD >= 0
then if =0
then {SCP:= true; TO1(false,occupied,0)}
else if SCP | ~API
then TO1(false,occupied,CD)
else C |> right !
TO1(self,occupied,true,CD)
else stall()

proc Complete(RW,CD:Int) =
SCP:= true; TOl(true,complete_unoccupied,CD)

% Within the following procedure we find again a test

% whether a value is above zero: if not, we stall.

% Also, we find a statement ‘stop APM’, which deactivates the
% cyclic time-out APM.

proc Incomplete(RW,CD:Int) =
if AMA
then if SCP >= 0
then SCP:= (SCD[RW] == 0)
else stall()
else {stop APM; SCP:= false};
T01(true,incomplete_unoccupied,CD)

% The following procedure is meant to handle uniformly certain
% flows. The first datum is to be matched with API. If there is
% such a match, API is flipped and a central telegram TO1 is

% sent.

proc TO1(b:Bool; AM:AMS; CD:Int) =
if API == b then {API:= ~“b;
C |> right ! TO1(self,AM,false,CD)}

mes b? E02(WN:Component; AM:AMS; RW,CD:Int) =
Ea |> Pa ! E02(WN,AM,RW,CD)

% The following flows (under certain conditions) execute



100 LARIS 1.0

% the one-shot procedures SITal or SITbl. These put an
% internal telegram into the buffer if the corresponding
% boolean variables SITal or SITbl are not already set.

mes a? E03() =
if LCS | VTS
then {SITa:= true; SITal()}
else Eb |> Pb ! E03()

mes b? E03() =
if VTS
then {SITb:= true; SITb1()}
else Ea |> Pa ! E03()

mes a 7 E04(TS:Bool) =
if VTS
then {{if SITb then SITb1()};
if TS
then TSUa:= true; T02(true)
else TSUa:= false}
else Eb |> Pb ! E04(TS)

mes b? E04(TS:Bool) =
if VTS
then {{if SITa then SITal()};
TSUb:= TS;
{if “TSUa then TO02(TS)}}
else if LCS
then {{if SITa then SITal1()}; TSUb:= TS; T02(TS)}
else Ea |> Pa ! E04(TS)

proc TO2(TS:Bool) =
if SOI == TS then {SOI:= “TS; C |> right ! T02(self,TS)}

mes a? F01(TS,DL:Bool)
mes b? F01(TS,DL:Bool)

Eb |> Pb ! F01(TS,DL)
Ea |> Pa ! FO1(TS,DL)

% The following denotes receival of a central telegram from the
% right. The port ‘right’ is treated as just another port.

mes right? U01() = if API then SCP:= true
% The following is an internal telegram, which we can see from

% the absence of a port name before the ‘?’. It is related to
% the cyclic time-out APM, although the name of the telegram
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% does not guarantee this link.

mes 7 APM() =
if PAM | AMA
then Ea |> Pa ! E0O1(C,RNR,0)
else {stop APM;
SCP:= false;
TO1(true,incomplete_unoccupied,®)}

% The next internal telegram is purely intented for the inmitial
% behaviour. It is called in the ‘initial’ clause. Note how the
% two INI-flows in the EURIS-specification are processed

% sequentially here.

mes 7 INI(Q) =
if LCS | VTS then Eb |> Pb ! E03();
if VTS then Ea |> Pa ! E03()

% One-shots are simulated as follows. For every one-shot

% variable X there is a boolean variable X, a procedure

% X() and a telegram X(). The variable X records whether

% the one-shot is set. The procedure only sets X if it is

% not already set, in which case it sends the internal

% telegram X. When this is processed, it unsets X and carries
% out the flow.

% Below we choose the names SITal and SITbl, because

% SITa and SITb are already used as ordinary boolean variables.

proc SITal{) =
if ~“SITal then {SITal:= true; ! SITal1()}

mes ? SITal() = SITal:= false; Ea |> Pa ! E04(TSUb)

proc SITb1() =
if “SITbl then {SITbl:= true; ! SITb1()}

mes ? SITb1() = SITbl:= false; Eb |> Pb ! E04(TSUa)

mes a? I100() = Eb |> Pb ! I000)

mes b? I00() = Ea |> Pa ! 1I000)
mes a? I101() = Eb |> Pb 1010
mes b? I01() = Ea |> Pa ! 101()

mes b? I02() = Ea |> Pa ! 102()

1
!
1
mes a? I102() = Eb |> Pb | 1020
1
mes a? I03() = Eb |> Pb ! I03()
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mes b? I03() = Ea |> Pa ! I03()
mes a? J0O1() = Eb |> Pb ! JO1(Q)
mes b? JO1() = Ea |> Pa ! JO1(Q)
mes a? J02() = Eb [> Pb ! J02()
mes b? J02() = Ea |> Pa ! J02(Q)

% The procedure ‘stall’ simply makes sure that no action is
% taken. This ensures that the panic clause is reached.

proc stall() = if 0 == (0 div 0) then skip

% The following describes the action to be undertaken should

% something unforeseen occur. We have chosen to send a telegram
% to the logistic level, but one may choose any other type of

% action. We use ‘Log’ to denote the logistic level, which is

% treated as just another component. ‘log’ is the only port

% that we assume present at this level. The panic-feature is

% strictly outside the scope of EURIS.

panic Log |> log ! PO1(self)
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WARRAIIIIIDRh L hhA%% 3. WARNING DEVICE LSC AAAAAALAAALARLLLAAA LY
LSC warning device

% List is the list of approach monitors that report to this

% warning device. We do not know in advance how many monitors

% to expect, so the type of the list is Component[Int]. As this

% makes Component[Int] into an infinite list, we also need to

% specify the part that we are interested in. For this we use

% the parameter ‘Length’. For instance, if there are two approach
% monitors al and a2 (in that order in the central 1list), then we
% set these parameters as List = {(1,al), (2,a2)} and Length = 2.

(List:Component [Int]; Length:Int) =

% The local variables: two multivars, represented as lists of
% booleans with components as indices, a timer and a boolean,
% used for a omne-shot.

vars CAPI,CS0I:Bool [Component]; WDT:Timer; WDC:Bool
% There is no initial behaviour:
initial skip

% A warning device only has one port, namely ‘right’: on this it
% may receive telegrams TO1 and T02.

% Value WDT returns the time that the timer has been active.
% If it is passive then 0 is returned.

mes right? TO1(E:Component; AM:AMS; WT:Bool; CD:Int) =
WwDC();
if AM == occupied
then {CAPI[E]:= true;
if {WT | (value WDT) >= CD} then E |> right ! U01()}
else CAPI[E]:= false

mes right? TO2(E:Component; TS:Bool) =
WDC(); CSDI[E]:= "TS

% The one-shot WDC is again split up into a procedure that
% decides whether to send the telegram and the message handling
% itself.
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proc WDC() = if ~“WDC then {WDC:= true; ! WDCQ}

ST ST N e s

The flow corresponding to the WDC one-shot involves testing
the multivars. For this we have to proceed through List,
from the components at indices from 1 to Length, and see
whether one of the corresponding CAPI or CSOI-values has
been set to true or nmot. To proceed through the list we

use the local variable i. Variables TESTCAPI and TESTCSOI
are used to store the disjunction (‘logical or’) of CAPI

and CS0I respectively. TESTCAPI and TESTCSOI are explicitly
set to their default values, according with good programming
practice, even though it is not strictly necessary to do so.

mes ? WDC() =

%

vars TESTCAPI,TESTCSOI:Bool; i:Int

WDC:= false;

i:= 1; TESTCAPI:= false; TESTCSOI:= false;
while i <= Length do

{TESTCAPI:= CAPI[List[i]] | TESTCAPI;
TESTCS0I:= CSOI[List[i]] | TESTCSOI;
i:= i+1};

if TESTCAPI | TESTCSOI
then {{if ~(active WDT) then start WDT};
Inf |> inf ! WO5(self,false)}
else {stop WDT; Inf |> inf ! WO5(self,true)}

The panic clause: same as for approach monitors.

panic Log |> log ! PO1(self)
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TR 4. TRACK LSC UMMM

LSC track
(Ea, % Component connected to the a-port
Eb:Component; % Component connected to the b-port
Pa, % Port on Ea connected to the a-port
Pb:Port; % Port on Eb connected to the b-port
PTS:Bool; % Passive Track Section
TSL:Int) % Track Section Length
vars
RDI, % Route Direction Indicator
TSU, % Track Section Unoccupied (toggle)
TSC, % Track Section Checked unoccupied (toggle)
TRP, % Track section route Release Permitted
TS0, % Track Section logically Occupied (toggle)
BO1, % BO1 telegram initiator (one-shot)
PER, % Preceding Element Released
TRL, % Track section Route Locking
% Telegram initiator for Train Protection Control
% (one-shot):
TPCa, % (side a)
TPCb, % (side b)
% Indicator for track Section Information
% Transmission:
SITa, % (side a)
SITb, % (side b)
% Indicator for Fouling Information Transmission:
FITa, % (side a)
FITb:Bool; % (side b)
% Train Protection Speed:
TPSa, % (side a)
TPSb:Int; % (side b)
TRD:Timeout; % Track section route Release Delay timer

BO1C:Cycler % BO1 telegram initiator (cyclic time-out)

% Initially, internal telegrams related to toggles ($-variables)
% are sent. An order was chosen here. It is possible that an

% external telegram is received before these are all put into

% the input buffer. If this does not happen, none of these

% telegrams have much of an effect, because they all test for

% the truth of some boolean LSC variables which by defalt are

% all false. Note that a certain order of putting the telegrams
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% into the input buffer has been chosen. LARIS does not impose
% any particular order here.

initial ! TSUQ); ! TSC(); ! TSO(Q)

mes a? A01() = Eb |> Pb ! A01()
mes b? A01() = Ea |> Pa ! A01()
mes a? A02() = Eb [> Pb ! A02(Q)
mes b? A02() = Ea |> Pa ! A02()
mes a? A03() = Eb [> Pb ! A03()
mes b? A03() = Ea |> Pa ! A03()
mes a? AO4(RT:Route) = A04(Eb,Pb,RT)

mes b? AO4(RT:Route) = AO4(Ea,Pa,RT)

% The following case-in statement has a useful otherwise clause.
% If RT is either automatic_normal or drive_on_sight_normal, an
% error should occur: this is forced by the stall procedure.

proc A04(E:Component; p:Port; RT:Route) =
case RT in
{drive_on_sight: TSU(true); TSO(false);
E |>p ! AO4A(RT)
normal : E |>p ! AO4(RT)
otherwise : stallQ}

mes a? AO5() = Eb |> Pb ! A05()
mes b? A05() = Ea |> Pa ! A05()

mes a? AO6(RN:Bool; RL:Int) = A06(a,RN,RL)
mes b? AO6(RN:Bool; RL:Int) A06(b,RN,RL)

proc A06(p:Port; RN:Bool; RL:Int) =

RL:= RL+TSL;

{if ~“TSU then {TSO(true); BO1()}};

PER:= false;

TRL:= true;

stop BO1C;

if p==a
then {RDI:
else {RDI:

false; Eb |> Pb ! AO6(RN,RL)}
true; Ea |> Pa ! AO6(RN,RL)}

mes a? AO7(VP,VT:Int) =
{if TPSa =/= VT then {TPSa:= VT; TPCa()}};
A07 (Eb,Pb,VP,VT)
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mes b? A07(VP,VT:Bool) =
{if TPSb =/= VT then {TPSb:= VT; TPCb()}};
A07(Ea,Pa,VP,VT)

proc AO7(E:Component; p:Port; VP,VT:Int) =
if "TRL | “PER
then if TSO | ~TSU
then {if TRL then TSO:
{if VP >= 0
then if VP > O
then E |> p ! A07(1,0)
else E |> p ! AO7(VP,VT)
else stall()}
else E [> p ! AOT(VP,VT)}

true};

if ~“TSU then Ea |> Pa ! B0O1(TO)
if ~TSU then Eb |> Pb ! B01(TOD)

mes a? B01(T0:Bool)
mes b? B01(T0:Bool)

mes a? B02() =
if TPSa >= 0
then {if TPSa > 0 then {TPCa(); TPSa:
B02()
else stall()

0}};

mes b? B02() =
if TPSb >= 0
then {if TPSb > 0 then {TPCb(); TPSb:
B02()
else stall()

0}};

proc B02() = stop BO1C; TSO(false); if TSU then PERQ)

mes a? B03()
mes b? B03()

Eb |> Pb ! B03()
Ea |> Pa ! BO3()

mes a? B04()
mes b7 B04()

B04()
B04()

proc B04()
if (TSU ~ TSO) | (TSU ~ ~TRP)
then PER:= true
else {TRL:= false;
if RDI
then Ea |> Pa ! B04()
else Eb [> Pb ! B04()}
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mes a? CO1() = Eb |> Pb ! CO1(Q)
mes b7 C01() Ea |> Pa ! C01Q)

mes a? CO2(RL:Int)
mes b? CO2(RL:Int)

C02(Eb,Pb,RL)
C02(Ea,Pa,RL)

% The following procedure’s first two parameters tell us

% where to send a telegram, should this be called for. We
% see above that if C02 is recieved on the a-port the

% telegram should be sent along the b-port, and vice-versa.

proc CO2(E:Component; p:Port; RL:Int) =
if (TSU ~ ~TS0) | ("TSU - PTS ~ ~(active TRD))
then TRL:= false;
{if TPSa >= 0 ~ TSU

then {if TPSa > O then {TPSa:= 0; TPCa()}}
else stall()};

{if TPSb >= 0 -~ TSU
then {if TPSb > 0 then {TPSb:= 0; TPCb{()}}

else stall()};
E [>p ! CO2(RL)
else {{if TSO then RL:= RL+TSL};
E |>p ! CO3(RL)}

mes a? CO3(RL:Int) = CO3(Eb,Pb,RL)
mes b? CO3(RL:Int) C03(Ea,Pa,RL)

% The same trick as used in the C02 procedure is used here.

proc CO3(E:Component; p:Port; RL:Int) =
if RL >= 0
then {{if RL>0 | (TSO ~ ("PTS | active TRD))
then RL:= RL+TSL};
E |>p ! CO2(RL)}
else stall()

mes a? C04()
mes b? C04()
mes a? CO5()
mes b? C05()

if TSU then Eb |> Pb ! C04()
if TSU then Ea |> Pa ! C04()
Eb |> Pb ! C05()
Ea |> Pa ! CO5Q)

mes a? DO1(AR:Bool)
mes b? DO1(AR:Bool)

DO1(Eb,Ea,Pb,Pa,AR)
DO1(Ea,Eb,Pa,Pb,AR)

]
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% The following procedure carries two component names and two
% port names as parameters. If a telegram is to be sent along
% (say from the a- to the b-port) them it is sent to the

% ‘Forward’ component, which receives it on port ‘forward’.

% Otherwise, if the

telegram is to be returned, it is sent to

% ‘Back’, which receives it on the port ‘back’.

% The nested if-the-

% specification has

else structure of the DOl1-flow in the EURIS
been simplified somewhat by the use of

% boolean expressions.

proc DO1(Forward,Back:Component; forward,back:Port; AR:Bool) =

if TRL
then {if (TSU
then
else
mes a? DO2(AR:Bool)
mes b? DO2(AR:Bool)
mes a? D0O3() =
if “PTS then {if
DO3(Eb,Pb)
mes b? DO3() =

if “PTS then {if

DO3(Ea,Pa)

=~ ("PTS | TS0)) | ("PTS ~ PER)

{if ~TSU then AR:= truel};

Back |> back ! DO2(AR)

if "PTS | (TSU -~ TSO) | ~(active TRD)
then Forward |> forward ! DO1(AR)}

Eb |> Pb ! DO2(AR)
= Ea |> Pa ! DO2(AR)

TPSa >= 0

then {{if TPSa > O then TPCa()}; TPSa:= 0}
else stall()};

TPSb >= 0

then {{if TPSb > O then TPCb()}; TPSb:= 0}

else stall()};

proc DO3(E:Component; p:Port) =

if TRL

then {TRL:= false; TSO(false);

if PER

then PER:= false
else E |> p ! D030}

mes a? EQ01(WN:Component; RW,CD:Int)

EO1(Eb,Ea,Pb,Pa,WN,RW,CD)

mes b? EO01(WN:Component; RW,CD:Int)

EO1(Ea,Eb,Pa,Pb,WN,RW,CD)
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proc EO1(Forward,Back:Component; forward,back:Port;
WN:Component; RW,CD:Int) =
if TSO | ~TSU
then Back |> back ! EO02(WN,occupied,RW,CD)
else Forward |> forward ! EO1(WN,RW,CD)

mes a? EO02(WN:Component; AM:AMS; RW,CD:Int)
Eb |> Pb ! E02(WN,AM,RW,CD)

mes b? E02(WN:Component; AM:AMS; RW,CD:Int)
Ea |> Pa ! E02(WN,AM,RW,CD)

mes a? E03() = SITa:= true; Ea |> Pa ! E04(TSC)

mes b? E03() = SITb:= true; Eb |> Pb ! E04(TSC)

mes a? FO01(TS,DL:Bool) = F01(Eb,Pb,TS,DL)

mes a? F01(TS,DL:Bool) = FO01(Ea,Pa,TS,DL)

proc FO1(E:Component; p:Port; TS,DL:Bool) =
if TS
then TS:= TSU
else if TSU then DL:= false;
E |> p ! FO1(TS,DL)

mes a? I101(TS:Bool) =
FITa:= true;
if TSC then Ea |> Pa ! I01(true)

mes b? I01(TS:Bool) =
FITb:= true;
if TSC then Eb |> Pb ! I01(true)

mes a? 102() = Eb |> Pb ! 1020
mes b? 102() = Ea |> Pa ! 1020
mes a? I03() = Eb |> Pb ! I03()
mes b? I03() = Ea [> Pa ! 103()

% The following flow deals with a telegram X04 received from
% the infrastructure level: such telegrams are received on
% port ‘inf’.

mes inf? X04(TS:Bool) =
TSU(TS);
if TS
then {if TSO then TSC(true)}
else {{if TRL then TSO(true)}; TSC(true)}
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% One-shots:

proc TPCa()
proc TPCb()
proc B0O1()

if ~“TPCa then {TPCa:= true; ! TPCa()}
if “TPCb then {TPCb:= true; ! TPCb()}
if "BO1 then {BO1l:= true; ! BO1()}

mes ? TPCa() = Inf |> inf ! WO2(self,TPSa)
mes ? TPCb() = Inf |> inf ! WO3(self,TPSb)

mes ? BO1() = if RDI
then Ea |> Pa ! BO1(true)
else Eb |> Pb ! BO1(true)

% A toggle X is modelled by a boolean variable X,

% a procedure X(b:Bool), and a telegram X(), which

% concatenates all the flows of X (if there is more

% than one) in a specific order. Again, random orders
% of such flows are not available in LARIS.

% The toggle X is set by calling X(true) and reset by
% calling X(false). The procedure checks whether this
% means that the value has changed. If it has, then
% the X-telegram is put into the input buffer.

if TSU =/= b then {TSU:= b; ! TSUQ}
if TSC =/= b then {TSC:=b; ! TSCO}
if TSO =/= b then {TS0:=b; ! TSOO}

proc TSU(b:Bool)
proc TSC(b:Bool)
proc TSO0(b:Bool)

% Toggle-flows:

% In the first flow, in case “TSU ~ PTS, we see that a

% time-out is activated, with delay TSL div 5. In the EURIS-
% specification, a telegram-field EL was used to‘carry’

% the value of TSL to TRD, but this is unnecessary here.

mes 7 TSU(Q) =
if TSU
then stop TRD; TRP:= false;
if TSO
then if TRL
then if RDI

then Ea |> Pa ! BO1(false)
else Eb [> Pb ! BO1(false)
else stop BO1C
else PER()
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else {{if PTS then >># TRD (TSL div 5) ! TRD()};
if TRL
then {B01Q);
if RDI
then Eb |> Pb ! B02(Q)
else Ea |> Pa ! BO1()}}
proc PER() =
if PER then {PER:= false; TRL:= false;
if RDI
then Ea |> Pa ! B04(Q)
else Eb |> Pb | B04()}

% The following flow concatenates the four flows of TSC.

mes 7 TSC() =
if SITa then Ea |> Pa ! E04(TSC);
if SITb then Eb |> Pb ! E04(TSC);
if FITa then Ea |> Pa ! IO1(TSC);
if FITb then Eb |> Pb ! I01(TSC)

mes ? TSQ() = if TSU - ~“TSO then TSC(true)

% Time-out telegram:
mes ? TRD() = TRP:= true; PERQ)
% Cyclic time-out telegram:

mes 7 BO1C() =

Ea |> Pa ! BO1(false); Eb |> Pb ! BO1(false)

% Stalling procedure:

proc stall() = if 0 == (0 div 0) then skip

% Panic clause:

panic Log |> log ! PO1(self)
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WARRRIARAAAAIAA 6. System Declaration LALLAAAAAAAAAAAAIIISSAN

System
Part_of _Driebergen % The name of the system

™

> =2

First, we list the components that are not in the subsystem
of Driebergen being modelled here, but to which reference is
made nevertheless, for instance in the parameters of the
components which we do specify. If it is not known which
component, for instance, is connected to the a-port of a
component in our system, we must give a name to this component
nonetheless.

It is not necessary (and not allowed) to mention the names Inf
and Log of the infrastructure and logistic level components
explicitly in this set: it is assumed that these are always
present.

External components = {T94C, T95B, T102B,
S100, S102, S104}

Next, we list the port names on these external components to
which we may send telegrams. In this particular case, we could
have left these extra port names out of the specificationm,
because they also exist as port names on approach monitors.

It is unnecessary (and not allowed) to mention the port names
left, right, inf, and log. These are assumed to be present in
any system.

External ports = {a,b}
Next we have a list of bindings:

apprmonitor Am46300Ea(T102B, T102A, Wd46300, b, a,
false, true, false, {}:Int[Int])

The last argument of the approach monitor {(*,15)}:Int[Int]}
represents an array (of type Int[Int]) with all values equal
to 15.

apprmonitor Am46300Wa(S102, T102A, Wd46300, b, b,
false, false, false, {(*,15)}:Int[Int])
apprmonitor Am46300Eb(T95B, T94B, Wd46300, b, a,
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true, true, false, {}:Int[Int])
apprmonitor Am46300Wb(T94C, T94B, Wd46300, a, b,

true, false, false, {}:Int[Int])
apprmonitor Am46300Ec(S100, T104A, Wd46300, b, a,

false, true, false, {(*,15)}:Int[Int])
apprmonitor Am46300Wc(S104, T104A, Wd46300, b, b,

false, false, false, {(*,15)}:Int[Int])

% A Warning Device needs two arguments: a list of components,
% and an integer (representing the length of the list).

warningdevice Wd46300(
{(1,Am46300Ea), (2, Am46300Wa) , (3, Am46300EDb) ,
(4,Am46300Wb) , (5, Am46300Ec) , (6, Am46300Wc) } : Component [Int],
6)

% Three tracks:

track T104A(Am46300Ec, Am46300Wc, b, b, false, 24)
track T102A(Am46300Ea, Am46300Wa, b, b, false, 24)
track T94B(Am46300Eb, Am46300Wb, b, b, true, 24)

7 Conclusions and future work

EURIS is a specification method for interlocking logics. The object-oriented
approach of EURIS is a strong point in its favour, and its graphical format
allows for compact specifications. However, this compactness can obstruct the
clarity of EURIS specifications, especially because in practice EURIS is often
treated more like a programming language than as a specification language.

In this document we have provided EURIS with a symbolic variant, LARIS
1.0 (referred to as plain ‘LARIS’ in most of the document). LARIS 1.0 may be
viewed as an intermediate representation between IDEAL [17] and established
specification languages for which tools such as simulators and model-checkers
exist, such as PROMELA [15], LOTOS [21], and SDL [9]. Alternatively, and
this is the view that the authors take, LARIS 1.0 may be used as the prime
specification language. EURIS is then simply one way to write LARIS specifi-
cations.

This situation is depicted in Figure 11. Specifications (which initially exist
only as ideas) can be written either in EURIS (preferably using the simulator,
which forces rigorous syntax) or in LARIS. If a specification is given in EURIS
using the simulator, then this specification outputs IDEAL code. Future work
could be on a compiler from IDEAL to LARIS. Sections 3.5 and 3.6 contain
ideas about how this could be achieved.

Ideally, tool support would have to be developed for LARIS 1.0, for exam-
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ple to check its static semantics, to allow simulations, or to perform model-
checking. Instead of developing such tools directly, it would seem wise to
instead translate LARIS 1.0 into languages for which such tools already exists.
The translations should be such that any behaviour of the translation is also
one of the original, and if some behaviour of the original does not exist in the
translation, then this should be motivated explicitly.

N

SPEClFlCATlON’?

LARIS 1.0

\

SDL J PROMELA —‘ Lotos | e e

Figure 11: Future development with LARIS 1.0.

Excluding certain traces (sequences of actions) from the system, which the
semantics we have defined allows, seems necessary in any case. In the semantics
we defined, it is perfectly possible (for instance) for traces to consist purely of
time-steps. This would correspond to a totally inactive system. Another,
related, possibility is that one component is starved, that is, not allowed any
action. In the latter case, it could still be that other components act normally.
Fairness constraints are needed to rule out such traces. Preferably at the
moment of constructing the state-space, or else one could state the formal
requirements in a conditional way: ‘if such-and-such conditions hold, then these
other requirements also hold’. These extra conditions would then of course
become part of the requirements of an implementation.

A problem of specifications written in LARIS 1.0 is the size of the gener-
ated state-space. One could argue that this is due to the requirement that
EURIS specifications, which themselves generate huge state-spaces, should be
expressible in LARIS 1.0. To reduce the state-space, it seems necessary to place
a severe bound on the size of the buffers used, both those internal to compo-
nents, and those of channels. Work of relevance here may be found in [4], where
a number of bounds are explored.
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When doing verifications, one should be aware that LARIS does not au-
tomatically assume that the system is closed. Thus external telegrams may
arrive at a component, even when it is not specified where these come from.
If one knows that such telegrams can only come from components inside the
specification, one should restrict the occurrence of such lone receive actions, by
encapsulating these.

We believe the language, as presented, is rich enough to express all EURIS
constructs. However, the translation is sometimes cumbersome. For instance,
toggles are not represented by variables declared as X : §, but are simulated, as
demonstrated in Section 3.6. One could allow to define a macro for toggles. A
translation to proper LARIS 1.0 is then required. A similar remark holds for
one-shots.

The choice of defining procedures as call-by-value can feel as a real restric-
tion. An example is in the use of procedures when translating EURIS boxes
into LARIS. Such boxes are modules, where telegram-fields may be altered.
To capture such alterations in the corresponding LARIS 1.0 procedure, one
would need to declare a global LSC variable and change that variable. This is
unsatisfactory. So perhaps call-by-reference is desired. This would lead to a
redefinition of the static and operational semantics, and would also make these
slightly more complex.
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LARIS 1.0 — LAnguage for Railway Interlocking Specifications
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Summary. The increasing use of computerized railway control requires a change
in the ways these have been developed for the last decades. Peter Middelraad and
his co-workers developed a visionary graphical specification language for control
systems, called EURIS, together with a tool set to animate such specifications.
EURIS was used to specify the control of several Dutch railway yards.

To enter a next phase in the use, tooling, and development of EURIS, in this tract
we put forward a textual version of EURIS, called LARIS. We present intuition
and motivation for LARIS, together with a thorough treatment of its syntax and
semantics. A detailed exemplifying LARIS specification is given of the railway
yard at Driebergen.





